Skip to main content
Log in

Seismic fragility assessment of integral precast multi-span bridges in areas of moderate seismicity

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

In lack of seismic provisions in the pre-Eurocode ages, most of the existing Hungarian bridges were not designed for seismic actions, therefore their seismic performance is questionable. The most commonly used structural type in highway construction is the integral precast multi-girder bridge. These bridges are typically constructed as continuous multi-support systems with monolithic joints at each support, thus their behavior may be significantly different from those applying simply supported beams and conventional bearings. A parametric fragility analysis of a wide range of different layouts is carried out using detailed and advanced non-linear numerical models. The results indicate that the abutment joints are highly vulnerable and piers are also critical for longer bridges. The study implies that without seismic design, integral precast multi-girder bridges are highly susceptible to pier shear failure, the probability of collapse is relatively high. The results also provide a solid basis for retrofit planning as well as for development of design concepts of newly built structures in moderate seismic zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Akiyama H, Kajikawa Y (2008) Fundamentally structural characteristics of integral bridges. Thesis, Graduate School of Natural Science and Technology Kanazawa University

  • Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean Region and the Middle East. Seismol Res Lett 81(2):195–206. doi:10.1785/gssrl.81.2.195

    Article  Google Scholar 

  • Avşar Ö, Yakut A, Caner A (2011) Analytical fragility curves for ordinary highway bridges in Turkey. Earthq Spectra 27(4):971–996. doi:10.1193/1.3651349

    Article  Google Scholar 

  • Baker JW (2011) Conditional mean spectrum: tool for ground motion selection. J Struct Eng 137(3):322–331. doi:10.1061/(ASCE)ST.1943-541X.0000215

    Article  Google Scholar 

  • Baker JW (2015) Efficient analytical fragility function fitting using dynamic structural analysis. Earthq Spectra 31(1):579–599. doi:10.1193/021113EQS025M

    Article  Google Scholar 

  • Basoz N, Kiremidjian AS (1996) Risk assessment for highway transportation systems. Report No. NCEER-118, John A. Blume Earthquake Engineering Center

  • Biskinis D, Roupakias G, Fardis MN (2004) Degradation of shear strength of RC members with inelastic cyclic displacements. ACI Struct J 101(6):773–783

    Google Scholar 

  • Borzi B, Ceresa P, Franchin P, Noto F, Calvi GM, Pinto PE (2015) Seismic vulnerability of the Italian roadway bridge stock. Earthq Spectra 31(4):2137–2161. doi:10.1193/070413EQS190M

    Article  Google Scholar 

  • Bradley BA (2010) A generalized conditional intensity measure approach and holistic ground-motion selection. Earthq Eng Struct Dyn 39(12):1321–1342. doi:10.1002/eqe.995

    Google Scholar 

  • Bradley BA (2012a) The seismic demand hazard and importance of the conditioning intensity measure. Earthq Eng Struct Dyn 41(11):1417–1437. doi:10.1002/eqe.2221

    Article  Google Scholar 

  • Bradley BA (2012b) A ground motion selection algorithm based on the generalized conditional intensity measure approach. Soil Dyn Earthq Eng 40(1):48–61. doi:10.1016/j.soildyn.2012.04.007

    Article  Google Scholar 

  • Caltrans (2013) Caltrans seismic design criteria. California Department of Transportation, Sacramento, CA, Version 1.7

  • CEN (2008a) MSZ EN 1998-1 Eurocode 8: design of structures for earthquake resistance. Part 1: general rules, seismic actions and rules for buildings

  • CEN (2008b) MSZ EN 1998-1 Eurocode 8: design of structures for earthquake resistance. Part 2: bridges

  • CEN (2009) MSZ EN 1998-5 Eurocode 8: design of structures for earthquake resistance. Part 5: foundations, retaining structures and geotechnical aspects

  • CEN (2011a) MSZ EN 1998-3 Eurocode 8: design of structures for earthquake resistance. Part 3: assessment and retrofitting of buildings

  • CEN (2011b) MSZ EN 1990-1 Eurocode 0: basis of structural design

  • Charney FA (2008) Unintended consequences of modeling damping in structures. J Struct Eng 134(4):581–592. doi:10.1061/(ASCE)0733-9445(2008)134:4(581)

    Article  Google Scholar 

  • Connal J (2004) Integral abutment bridges-Australian and US practice. 5th Austroads bridge conference, Hobart, Tasmania

  • Elnashai AS, Di Sarno L (2008) Fundamentals of earthquake engineering. Wiley, UK

    Book  Google Scholar 

  • England GL, Tsang NCM, Bush DI (2000) Integral bridges: a fundamental approach to the time-temperature loading problem. Thomas Telford, London

    Book  Google Scholar 

  • Fennema J, Laman J, Linzell D (2005) Predicted and measured response of an integral abutment bridge. J Bridge Eng 10(6):666–677. doi:10.1061/(ASCE)1084-0702(2005)10:6(666)

    Article  Google Scholar 

  • FIB (2008) Bulletin 43: Structural connections for precast concrete buildings. International Federation for Structural Concrete

  • Franchin P, Pinto PE (2014) Performance-based seismic design of integral abutment bridges. Bull Earthq Eng 12(2):939–960. doi:10.1007/s10518-013-9552-2

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithm in search, optimization, and machine learning. Kluwer Academic Publishers, Boston

    Google Scholar 

  • HTA (2015) Integrated bridge database. Hungarian Transport Administration

  • Jalayer F, Cornell CA (2009) Alternative nonlinear demand estimation methods for probability-based seismic assessments. Earthq Eng Struct Dyn 38(8):951–972. doi:10.1002/eqe.876

    Article  Google Scholar 

  • JCSS (2001) Probabilistic model code. Joint Committee on Structural Safety, Zurich. ISBN 978-3-909386-79-6

    Google Scholar 

  • Kappos A, Sextos AG (2009) Seismic assessment of bridges accounting for nonlinear material and soil response, and varying boundary conditions. Part of the series NATO Science for Peace and Security Series C: Environmental Security pp 195–208

  • Kaufmann W (2011) Swiss federal roads office guidelines for integral bridges. Struct Eng Int 21(2):189–194

    Article  Google Scholar 

  • Kibboua A, Bechtoula H, Mehani Y, Naili M (2014) Vulnerability assessment of reinforced concrete bridge structures in Algiers using scenario earthquakes. Bull Earthq Eng 12(2):807–827. doi:10.1007/s10518-013-9523-7

    Article  Google Scholar 

  • Maroney BH (1995) Large scale bridge abutment tests to determine stiffness and ultimate strength under seismic loading. PhD thesis, Dept. of Civil Engineering, University of California Davis, CA

  • McKenna F, Scott MH, Fenves GL (2010) Nonlinear finite-element analysis software architecture using object composition. J Comput Civil Eng 24(1):97–105. doi:10.1061/(ASCE)CP.1943-5487.0000002

    Article  Google Scholar 

  • Mitoulis SA (2012) Seismic design of bridges with the participation of seat-type abutments. Eng Struct 44(1):222–233. doi:10.1016/j.engstruct.2012.05.033

    Article  Google Scholar 

  • Moschonas IF, Kappos AJ, Panetsos P, Papadopoulos V, Makarios T, Thanopoulos P (2009) Seismic fragility curves for Greek bridges: methodology and case studies. Bull Earthq Eng 7(2):439–468. doi:10.1007/s10518-008-9077-2

    Article  Google Scholar 

  • Nakamura S, Momijama Y, Hosaka T, Homma K (2002) New technologies of steel/concrete composite bridges. J Constr Steel Res 58(1):99–130. doi:10.1016/S0143-974X(01)00030-X

    Article  Google Scholar 

  • Nielson BG (2005) Analytical fragility curves for highway bridges in moderate seismic zones. PhD dissertation, School of Civil and Environmental Engineering, Georgia Institute of Technology

  • Nowak AS, Collins KR (2000) Reliability of structures. The McGraw-Hill Companies Inc, USA

    Google Scholar 

  • Padgett JE (2007) Seismic vulnerability assessment of retrofitted bridges using probabilistic methods, PhD Dissertation, 2007, School of Civil and Environmental Engineering—Georgia Institute of Technology

  • PEER (2015) NGA-West2 database: shallow crustal earthquakes in active tectonic regimes. Pacific Earthquake Engineering Research Center, University of California, Berkeley

    Google Scholar 

  • Priestley MJN, Seible F, Calvi GM (1996) Seismic design and retrofit of bridges. Wiley, New York

    Book  Google Scholar 

  • Psycharis NI, Mouzakis PH (2012) Shear resistance of pinned connections of precast members to monotonic and cyclic loading. Eng Struct 41(1):413–427. doi:10.1016/j.engstruct.2012.03.051

    Article  Google Scholar 

  • Sextos AG, Taskari O (2008) Comparative assessment of advanced computational tools for embankment-abutment-bridge superstructure interaction. The 14th World Conference on Earthq Eng, Beijing, China

  • Shamsabadi A, Rollins K, Kapuskar M (2007) Nonlinear soil–abutment–bridge structure interaction for seismic performance-based design. J Geotech Geoenviron 133(6):707–720. doi:10.1061/(ASCE)1090-0241(2007)133:6(707)

    Article  Google Scholar 

  • Simon J, Vigh LG (2015) Preliminary seismic vulnerability assessment of pre-code multi-girder bridges in Hungary, SECED Conference: Earthq Risk and Eng towards a Resilient World. Cambridge, UK, pp 1–10

  • Simon J, Vigh LG, Horváth A, Pusztai P (2015) Application and assessment of equivalent linear analysis method for conceptual seismic retrofit design of Háros M0 highway bridge. Period Polytech 59(2):109–122. doi:10.3311/PPci.7860

    Article  Google Scholar 

  • Solomos G, Pinto A, Dimova S (2008) A review of the seismic hazard zonation in national building codes in the context of Eurocode 8. JRC Scientific and Technical Reports

  • Tóth L, Győri E, Mónus P, Zsíros T (2006) Seismic hazard in the Pannonian region. The Adria Microplate: GPS Geodesy, Tectonics, and Hazards, Springer Verlag, NATO ARW Series 61(1):369–384. doi: 10.1007/1-4020-4235-3_25

  • ÚT (2004) Útügyi Műszaki Előírás ÚT 2-3.401 Közúti hidak tervezése, Általános előírások. Magyar Útügyi Társaság (in Hungarian)

  • Vamvatsikos D, Cornell CA (2002) Incremental dynamic analysis. Earthq Eng Struct Dyn 31(3):491–514. doi:10.1002/eqe.141

    Article  Google Scholar 

  • Vigh LG, Dunai L, Kollár L (2006) Numerical and design considerations of earthquake resistant design of two Danube bridges. 1st European Conference on Earthq Eng and Seism, Switzerland, Paper 1420

  • Wasserman EP (2007) Integral abutment design (practices in the United States). First US-Italy seismic bridge workshop, Pavia

    Google Scholar 

  • White H, Pétursson H, Collin P (2010) Integral abutment bridges: the European Way. Pract Period Struct Des Constr 15(3):201–208. doi:10.1061/(ASCE)SC.1943-5576.0000053

    Article  Google Scholar 

  • Wolf JP (1985) Dynamic soil-structure interaction. Prentice-Hall Inc, New Jersey

    Google Scholar 

  • Zhang J, Makris N (2002) Kinematic response functions and dynamic stiffnesses of bridge embankments. Earthq Eng Struct Dyn 31:1933–1966. doi:10.1002/eqe.196

    Article  Google Scholar 

  • Zsarnóczay Á, Vigh LG, Kollár L (2014) Seismic performance of conventional girder bridges in moderate seismic regions. J Bridge Eng 19(5): 9. Paper 04014001. doi: 10.1061/(ASCE)BE.1943-5592.0000536

Download references

Acknowledgments

This paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The data of the existing bridge database was provided by the Hungarian Transportation Administration for which the authors also express their gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Simon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, J., Vigh, L.G. Seismic fragility assessment of integral precast multi-span bridges in areas of moderate seismicity. Bull Earthquake Eng 14, 3125–3150 (2016). https://doi.org/10.1007/s10518-016-9947-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-016-9947-y

Keywords

Navigation