Skip to main content
Log in

Shaking table tests on a full-scale unreinforced and IMG-retrofitted clay brick masonry barrel vault

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

The recent earthquakes in Italy demonstrated the extreme vulnerability of historical and cultural structures. Masonry vaults, which represent artistically valuable elements of these constructions, have been recognised among the most vulnerable elements. Traditional vault retrofit methods, such as buttresses or ties, are still widely adopted. These retrofit methods prevent differential displacements between vault supports (e.g., abutments, masonry piers and loadbearing walls). However, the pier differential displacement is not the only vulnerability source for vaults, and in many cases, further retrofit interventions are needed. Innovative retrofit methods based on inorganic matrixes, such as IMG, are aimed to prevent hinge mechanism failures. Such methods are suitable to be applied on vaults already retrofitted using traditional methods. The knowledge of the seismic behaviour of a vault, once the differential displacement between the supports is prevented, can be crucial to the assessment of potential further vulnerabilities of vaults already retrofitted with traditional methods. However, a deep knowledge of vault seismic behaviour is still lacking from an experimental point of view. Indeed, to date, few dynamic experimental studies have been conducted. Therefore, to investigate the seismic behaviour of masonry barrel vaults, several shaking table tests were performed on a full-scale specimen before and after the retrofit interventions. The tests investigated the main seismic properties of the tested structure and clarified the cracking mechanisms and capacity improvement due to the retrofit interventions. A comprehensive overview of the main results of the experimental tests has been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Balsamo A, Di Ludovico M, Lignola GP et al (2011) Composites for structural strengthening. Wiley Encycl Compos. doi:10.1002/9781118097298.weoc038

    Google Scholar 

  • Baratta A, Corbi I, Corbi O, Rinaldis D (2008) Experimental evidence of uncertainty in seismic response of masonry vaults. 14th World Conference Earthquake Engineering

  • Block P, Ciblac T, Ochsendorf J (2006) Real-time limit analysis of vaulted masonry buildings. Comput Struct 84:1841–1852. doi:10.1016/j.compstruc.2006.08.002

    Article  Google Scholar 

  • Boothby TE (2001) Analysis of masonry arches and vaults. Prog Struct Eng Mater 3:246–256. doi:10.1002/pse.84

    Article  Google Scholar 

  • Bracci JM, Reinhorn AM, Mander JB (1992) Seismic resistance of reinforced concrete frame structures designed only for gravity loads-part III: exp performance and analytical study of a model. State University of New York at Buffalo, Buffalo, New York (USA)

    Google Scholar 

  • Callaway P, Gilbert M, Smith CC (2012) Influence of backfill on the capacity of masonry arch bridges. Proc ICE Bridg Eng 165:147–157. doi:10.1680/bren.11.00038

    Article  Google Scholar 

  • Carini A, Genna F (2012) Stability and strength of old masonry vaults under compressive longitudinal loads: engineering analyses of a case study. Eng Struct 40:218–229

    Article  Google Scholar 

  • Clemente P, Occhiuzzi A, Raithel A (1995) Limit behavior of stone arch bridges. J Struct Eng 121:1045–1050. doi:10.1061/(ASCE)0733-9445(1995)121:7(1045)

    Article  Google Scholar 

  • Coulomb CA (1773) Essai sur une application de maximis et minimis à quelques de statique, relatives à l’Architecture. Mémories del Mathématique Phys Present à l’Académie R des Sci 343–382

  • Couplet PA (1731) De la poussé e des voûtes. Académie R. des Scinces

  • CSI (2010) SAP 2000: linear and nonlinear static and dynamic analysis of three dimensional structures

  • De La Hire P (1730) Traité de mécanique, où l’on explique tout ce qui est necessaire dans la pratique des Arts. Mémoires l’Académie R des Sci 9:1–333

  • De Lorenzis L, DeJong M, Ochsendorf J (2007) Failure of masonry arches under impulse base motion. Earthq Eng Struct Dyn 36:2119–2136. doi:10.1002/eqe.719

    Article  Google Scholar 

  • Duarte RT, Ritto-Corrêa M, Vaz CT, Campos-Costa A (1994) Shaking table testing of structures. Earthq Eng Tenth World Conf

  • EN (2002) Methods of test for masonry units—part 1: determination of compressive strength. EN 772-1

  • Gago AS, Alfaiate J, Lamas A (2011) The effect of the infill in arched structures: analytical and numerical modelling. Eng Struct 33:1450–1458. doi:10.1016/j.engstruct.2010.12.037

    Article  Google Scholar 

  • Garmendia L, San-José JT, García D, Larrinaga P (2011) Rehabilitation of masonry arches with compatible advanced composite material. Constr Build Mater 25:4374–4385. doi:10.1016/j.conbuildmat.2011.03.065

    Article  Google Scholar 

  • Giamundo V (2014) Seismic assessment and retrofit of historical masonry barrel vaults. (PhD Thesis) University of Naples Federico II

  • Giamundo V, Lignola GP, Prota A, Manfredi G (2014a) Nonlinear analyses of adobe masonry walls reinforced with fiberglass mesh. Polymers 6(2):464–478. doi:10.3390/polym6020464

    Article  Google Scholar 

  • Giamundo V, Sarhosis V, Lignola GP, Sheng Y, Manfredi G (2014b) Evaluation of different computational modelling strategies for the analysis of low strength masonry structures. Eng Struct 73:160–169. doi:10.1016/j.engstruct.2014.05.007

    Article  Google Scholar 

  • Giamundo V, Lignola GP, Maddaloni G et al (2015) Experimental investigation of the seismic performances of IMG reinforcement on curved masonry elements. Compos Part B Eng 70:53–63. doi:10.1016/j.compositesb.2014.10.039

    Article  Google Scholar 

  • Girardello P, Pappas A, da Porto F, Valluzzi RM (2013) Experimental testing and numerical modelling of masonry vaults. Int Conf Rehabil Restor Struct, pp 1–10

  • Heyman J (1966) The stone skeleton. Int J Solids Struct 2:249–279. doi:10.1016/0020-7683(66)90018-7

    Article  Google Scholar 

  • Heyman J (1969) The safety of masonry arches. Int J Mech Sci 11:363–385. doi:10.1016/0020-7403(69)90070-8

    Article  Google Scholar 

  • Heyman J (1995) The stone skeleton. Structural engineering of masonry architecture. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Housner GW (1963) The behaviour of inverted pendulum structures during earthquakes. Bull Earthq Eng 53:403–417

    Google Scholar 

  • Lignola GP, Flora A, Manfredi G (2008) Simple method for the design of jet grouted umbrellas in tunneling. J Geotech Geoenviron Eng 134:1778–1790. doi:10.1061/(ASCE)1090-0241(2008)134:12(1778)

    Article  Google Scholar 

  • Lignola GP, Prota A, Manfredi G (2009) Nonlinear analyses of tuff masonry walls strengthened with cementitious matrix-grid composites. J Compos Constr 13:243–251. doi:10.1061/(Asce)Cc.1943-5614.0000007

    Article  Google Scholar 

  • Lignola GP, Ceroni F, Balsamo A et al (2011) Externally bonded masonry structures. Wiley Encycl Compos. doi:10.1002/9781118097298.weoc077

    Google Scholar 

  • Lignola GP, Prota A, Manfredi G (2012) Numerical investigation on the influence of FRP retrofit layout and geometry on the in-plane behavior of masonry walls. J Compos Constr 16:712–723. doi:10.1061/(ASCE)CC.1943-5614.0000297

    Article  Google Scholar 

  • Lourenço PB (1996) Computational strategies for masonry structures. Delft University of Technology

  • Maddaloni G, Ryu KP, Reinhorn AM (2011) Simulation of floor response spectra in shake table experiments. Earth Eng Struct Dyn 40:591–604. doi:10.1002/eqe.1035

    Article  Google Scholar 

  • Mahdi T (2004) Performance of traditional arches, vaults and domes in the 2003 Bam Earthquake. Asian J Civ Eng (Building Housing) 3–4:209–221

    Google Scholar 

  • Mahini SS, Eslami A, Ronagh HR (2012) Lateral performance and load carrying capacity of an unreinforced, CFRP-retrofitted historical masonry vault—a case study. Constr Build Mater 28:146–156

    Article  Google Scholar 

  • Melbourne C, Gilbert M (1995) The behaviour of multiring brickwork arch bridges. Struct Eng Int J Inst Struct Eng 73:39–47

    Google Scholar 

  • Méry E (1840) Sur l’equilibre des voûtes en berceau. Ann. des ponts Chausséss

  • Milani G (2013) Lesson learned after the Emilia-Romagna, Italy, 20–29 May 2012 earthquakes: a limit analysis insight on three masonry churches. Eng Fail Anal 34:761–778. doi:10.1016/j.engfailanal.2013.01.001

    Article  Google Scholar 

  • Parisi F, Augenti N (2013) Earthquake damages to cultural heritage constructions and simplified assessment of artworks. Eng Fail Anal 34:735–760. doi:10.1016/j.engfailanal.2013.01.005

    Article  Google Scholar 

  • Parisi F, Lignola G, Augenti N et al (2011) Nonlinear behavior of a masonry subassemblage before and after strengthening with inorganic matrix-grid composites. J Compos Constr 15:821–832. doi:10.1061/(ASCE)CC.1943-5614.0000203

    Article  Google Scholar 

  • Taranu N, Oprisan G, Budescu M et al (2010) Improving structural response of masonry vaults strengthened with polymeric textile composite strips. 3rd WSEAS Int Conf Eng Mech Struct Eng Geol

  • UNI (1976) Prove sui calcestruzzi. Determinazione del modulo elastico secante a compressione (in Italian). UNI 6556

  • UNI (1986) Prodotti di laterizio per murature. Metodi di prova (in Italian). UNI 8942-3

  • UNI-EN (2007) Metodi di prova per malte per opere murarie—Parte 11: determinazione della resistenza a flessione e a compressione della malta indurita (in Italian). UNI-EN 101

  • UNI-EN (2010) Specifiche per malte per opere murarie—Parte 2:Malte per muratura (in Italian). UNI-EN 998

  • Valluzzi M, Oliveira D, Caratelli A et al (2012) Round Robin Test for composite-to-brick shear bond characterization. Mater Struct 45:1761–1791. doi:10.1617/s11527-012-9883-5

    Article  Google Scholar 

  • Wittmann W (1879) Theorie der Gewölbe. Zeitschrift für Bauwes 29:61–74

    Google Scholar 

  • Zienkiewicz O, Taylor R, Zhu J (2005) The finite element method, its basis and fundamentals, 6th edn. Elsevier, Oxford

    Google Scholar 

Download references

Acknowledgments

The advices provided by Eng. Antimo Fiorillo in the definition of the test frame are gratefully acknowledged. Special thanks are extended to Eng. Giuseppe Campanella for the assistance in planning and conducting the tests. The authors also acknowledge Prof. Alberto Balsamo and Eng. Ivano Iovinella for the assistance in the design and execution of IMG strengthening.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Lignola.

Ethics declarations

Conflict of interest

The experimental tests were developed within the activities of the 3-year Project PON Research and Competitiveness (2007–2013) Provaci (PON 01_02324), financed through the Italian Ministry of University and Scientific Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giamundo, V., Lignola, G.P., Maddaloni, G. et al. Shaking table tests on a full-scale unreinforced and IMG-retrofitted clay brick masonry barrel vault. Bull Earthquake Eng 14, 1663–1693 (2016). https://doi.org/10.1007/s10518-016-9886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-016-9886-7

Keywords

Navigation