Bulletin of Earthquake Engineering

, Volume 15, Issue 7, pp 2695–2735 | Cite as

Probabilistic seismic hazard assessment for Saudi Arabia using spatially smoothed seismicity and analysis of hazard uncertainty

  • Vladimir Sokolov
  • Hani Mahmoud Zahran
  • Salah El-Hadidy Youssef
  • Mahmoud El-Hadidy
  • Wael Wassel Alraddadi
Original Research Paper


We analyze the results of a Probabilistic Seismic Hazard Assessment obtained for Saudi Arabia using a spatially smoothed seismicity model. The composite up-to-date earthquake catalog is used to model seismicity and to determine earthquake recurrence characteristics. Different techniques that are frequently used for the analysis of input data are applied in the study. The alternative techniques include the declustering procedures for catalog processing, statistical techniques for estimation the magnitude–frequency relationship (MFR), and the seismicity smoothing parameter. The scheme represents epistemic uncertainty that results from an incomplete knowledge of earthquake process and application of alternative mathematical models for a description of the process. Our calculations that are based on the Monte Carlo technique include also a consideration of the aleatory uncertainty related to the dimensions and depths of earthquake sources, parameters of MFR, and scatter of ground-motion parameter. The hazard maps show that the rock-site peak ground acceleration (PGA) is the highest for the seismically active areas in the north-western (Gulf of Aqaba, PGA > 300 cm/s2 for return period 2475 years) and south-western (PGA > 100 cm/s2 for return period 2475 years) parts of the country. We show that the procedures for catalog declustering have the highest influence on the results of hazard estimations, especially for high levels of hazard. The choice of smoothing parameter is a very important decision that requires proper caution. The relative uncertainty that is ratio between the 85th and 15th percentiles may reach 50–60% for the areas located near the zones of high-level seismic activity.


Saudi Arabia Seismic hazard Smoothed seismicity Epistemic uncertainty 



The work was carried out at the National Center for Earthquakes and Volcanoes, Saudi Geological Survey, Kingdom of Saudi Arabia. The comments and suggestions of anonymous reviewer are gratefully acknowledged.

Supplementary material

10518_2016_75_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2115 kb)


  1. Abrahamson NA (2000) State of the practice of seismic hazard evaluation. In: Proceedings of GeoEng2000, invited papers, vol 1, Melbourne, Australia, pp 659–685Google Scholar
  2. Aki K (1965) Maximum likelihood estimation of b in the formula log N = a − bM and its confidence limits. Bull Earthq Res Inst Tokyo Univ 43:237–239Google Scholar
  3. Akkar S, Sandikkaya MA, Bommer JJ (2014) Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng 12(1):359–387. doi: 10.1007/s10518-013-9461-4 CrossRefGoogle Scholar
  4. Al-Amri AM (2013) Seismotectonics and seismogenic source zones of the Arabian Platform. In: K. Al Hosani et al (eds) Lithosphere dynamics and sedimentary basins: the Arabian plate and analogues. Springer Frontiers in Earth Sciences, pp 295–316. doi: 10.1007/978-3-642-30609-9-15
  5. Al-Arifi NS, Fat-Helbary RE, Khalil AR, Lashin AA (2013) A new evaluation of seismic hazard for the northwestern part of Saudi Arabia. Nat Hazards 69:1435–1457. doi: 10.1007/s11069-013-0756-1 CrossRefGoogle Scholar
  6. Aldama-Bustos G, Bommer JJ, Fenton CH, Stafford PJ (2009) Probabilistic seismic hazard analysis for rock sites in the cities of Abu Dhabi, Dubai and Ra’s Al Khaymah, United Arab Emirates. Georisk 3(1):1–29Google Scholar
  7. Al-Haddad M, Siddiqi GH, Al-Zaid R, Arafah A, Necioglu A, Turkelli N (1994) A basis for evaluation of seismic hazard and design criteria for Saudi Arabia. Earthq Spectra 10:231–258CrossRefGoogle Scholar
  8. Al-Zahrani HA, Fnais MS, Al-Amri AM, Abdel-Rahman K (2012) Tectonic framework of Lunayyir area, northwest Saudi Arabia through aftershock sequence analysis of 19 May, 2009 earthquake and aeromagnetic data. Int J Phys Sci 7(44):5821–5833Google Scholar
  9. Ambraseis NN, Melville CP (1989) Evidence for intraplate earthquakes in Northwestern Arabia. Bull Seism Soc Am 79:1279–1281Google Scholar
  10. Ambraseys NN, Adams RD (1988). The seismicity of Saudi Arabia and adjacent areas: part B. ICST/KACST project. ESEE Rep. no. 88/11 Dept. of Civil Engineering, Imperial College of Science and Technology, LondonGoogle Scholar
  11. Ambraseys NN, Free MW (1997) Surface-wave magnitude calibration for European region earthquakes. J Earthq Eng 1:1–22. doi: 10.1080/13632469708962359 Google Scholar
  12. Ambraseys NN, Melville CP (1988) The seismicity of Saudi Arabia and adjacent areas: part A. ICST/KACST project. ESEE Rep. no. 88/11 Dept. of Civil Engineering, Imperial College of Science and Technology, LondonGoogle Scholar
  13. Ambraseys NN, Melville CP, Adams RD (1994) The seismicity of Egypt, Arabia and the Red Sea: a historical review. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Aspinall WP (2013) Scientific uncertainties: a perspective from probabilistic seismic hazard assessments for low-seismicity areas. In: Rougier J, Sparks S, Hill L (eds) Risk and uncertainty assessment for natural hazards. Cambridge University Press, Cambridge, pp 234–274. doi: 10.1017/CBO9781139047562.009 CrossRefGoogle Scholar
  15. Assatourians K, Atkinson GM (2013) EqHaz: an open-source probabilistic seismic-hazard code based on the Monte Carlo simulation approach. Seismol Res Lett 84:516–524. doi: 10.1785/0220120102 CrossRefGoogle Scholar
  16. Atkinson GM, Boore DM (2006) Earthquake ground-motion prediction equations for Eastern North America. Bull Seism Soc Am 96:2181–2205. doi: 10.1785/0120050245 CrossRefGoogle Scholar
  17. Atkinson GM, Goda K (2013) Probabilistic seismic hazard analysis of civil infrastructure. In: Tesfamariam S, Goda K (eds) Handbook of seismic risk analysis and management of civil infrastructure systems. Woodhead Publishing Ltd, Cambridge, pp 3–28. doi: 10.1533/9780857098986.1.3 CrossRefGoogle Scholar
  18. Atkinson GM, Bommer JJ, Abrahamson NA (2014) Alternative approaches to modeling epistemic uncertainty in ground motion in probabilistic seismic hazard analysis. Seism Res Lett 85:1141–1144. doi: 10.1785/0220140120 CrossRefGoogle Scholar
  19. Barani S, Spallarosa D, Bazzurro P, Eva C (2007) Sensitivity analysis of seismic hazard for Western Liguria (North Western Italy); a first attempt toward the understanding and quantification of hazard uncertainty. Tectonophysics 435:13–35. doi: 10.1016/j.tecto.2007.02.008 CrossRefGoogle Scholar
  20. Beauval A, Scotti O, Bonilla F (2006) The role of seismicity model in probabilistic seismic hazard estimations: comparison of a zoning and a smoothing approach. Geophys J Int 165:584–595. doi: 10.1111/j.1365-246X.2006.02945.x CrossRefGoogle Scholar
  21. Bender B (1983) Maximum likelihood estimation of b values for magnitude grouped data. Bull Seism Soc Am 33:831–851Google Scholar
  22. Beven KJ, Aspinall WP, Bates PD, Borgomeo E, Goda K, Hall JW, Page T, Phillips JS, Rougier JT, Simpson M, Stephenson DB, Smith PJ, Wagener T, Watson M (2015) Epistemic uncertainties and natural hazard risk assessment—part 1: a review of the issues. Nat Hazards Earth Syst Sci Discuss 3:7333–7377. doi: 10.5194/nhessd-3-7333-2015 CrossRefGoogle Scholar
  23. Bollinger GA, Chapman MC, Sibol MS (1993) A comparison of earthquake damage areas as a function of magnitude across the United States. Bull Seism Soc Am 83:1064–1080Google Scholar
  24. Bommer JJ, Douglas J, Scherbaum F, Cotton F, Bungum H, Fäh D (2010) On the selection of ground-motion prediction equations for seismic hazard analysis. Seismol Res Lett 81:783–793. doi: 10.1785/gssrl.81.5.783 CrossRefGoogle Scholar
  25. Bommer JJ, Coppersmith KJ, Coppersmith RT, Hanson KL, Mangongolo A, Neveling J, Rathje EM, Rodriguez-Marek A, Scherbaum F, Shelembe R, Stafford PJ, Strasser FO (2015) A SSHAC level 3 probabilistic seismic hazard analysis for a new-build nuclear site in South Africa. Earthq Spectra 31(2):661–698CrossRefGoogle Scholar
  26. Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-Damped PSA at spectral periods between 0.01 s and 10.0 s. Earthq Spectra 24:99–138. doi: 10.1193/1.2830434 CrossRefGoogle Scholar
  27. Boyd OS (2012) Including foreshocks and aftershocks in time-independent probabilistic seismic hazard analyses. Bull Seism Soc Am 102:909–917. doi: 10.1785/0120110008 CrossRefGoogle Scholar
  28. Bradley BS, Stirling MW, McVerry GH, Gerstenberger M (2012) Consideration and propagation ofepistemic uncertainties in New Zealand probabilistic seismic-hazard analysis. Bull Seism Soc Am 102:1554–1568. doi: 10.1785/0120110257 CrossRefGoogle Scholar
  29. Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5%-damped linear elastic response spectra at periods ranging from 0.1 s to 10.0 s. Earthq Spectra 24:139–171. doi: 10.1193/1.2857546 CrossRefGoogle Scholar
  30. Cao T, Petersen MD, Reichle MS (1996) Seismic hazard estimate from background seismicity in Southern California. Bull Seism Soc Am 86:1372–1382Google Scholar
  31. Castellaro S, Bormann P (2007) Performance of different regression procedures on the magnitude regression problem. Bull Seism Soc Am 97:1167–1175. doi: 10.1785/0120060102 CrossRefGoogle Scholar
  32. Castellaro S, Mulargia F, Kagan YY (2006) Regression problems for magnitudes. Geophys J Int 165:913–930CrossRefGoogle Scholar
  33. Cauzzi C, Faccioli E, Vanini M, Bianchini A (2015) Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bull Earthq Eng 13(6):1587–1612. doi: 10.1007/s10518-014-9685-y CrossRefGoogle Scholar
  34. CEN (European Committee for Standardization) (2004) Eurocode 8: design of structures for earthquake resistance, part 1: general rules, seismic actions and rules for buildings. EN1998–1:2004. Brussels, BelgiumGoogle Scholar
  35. Chan CH, Grünthal G (2009) Final report of Network of Research Infrastructures for European Seismology NERIES, Subproject JRA2 “Real time hazard tools” Task A “The living Euro-Med earthquake hazard” Hybrid zoneless probabilistic seismic hazard assessment: test and first application to Europe and the Mediterranean, 23 ppGoogle Scholar
  36. Chatterjee S, Hadi AS (2006) Regression analysis by example, 4th edn. Wiley, New YorkCrossRefGoogle Scholar
  37. Console R, Jackson DD, Kagan YY (2010) Using the ETAS model for catalog declustering and seismic background assessment. Pure Appl Geophys 167:819–830CrossRefGoogle Scholar
  38. Cornell CA (1968) Engineering seismic risk analysis. Bull Seism Soc Am 18:1583–1606Google Scholar
  39. Cornell CA, Vanmarcke EH (1969) The major influences on seismic risk. In: Proceedings of the 4th world conference on earthquake engineering, vol 1, Santiago, Chile, pp 69–83Google Scholar
  40. Crowley H, Bommer JJ (2006) Modelling seismic hazard in earthquake loss models with spatially distributed exposure. Bull Earthq Eng 4:249–273CrossRefGoogle Scholar
  41. Deif A, Zahran HM, El-Hadidy MS, Bawajeeh AO, El-Hadidy SY, Mansoub TA (2009) Sesimic hazard assessment along Haramein high speed rail project (Makkah-Madinah), SGS NCEV report, 150 ppGoogle Scholar
  42. Douglas J, Ulrich T, Bertil D, Rey J (2014) Comparison of ranges of uncertainty captured in different seismic-hazard studies. Seismol Res Lett 85(5):977–985. doi: 10.1785/0220140084 CrossRefGoogle Scholar
  43. Ebel JE, Kafka AL (1999) A Monte Carlo approach to seismic hazard analysis. Bull Seism Soc Am 89:854–866Google Scholar
  44. El-Hadidy MS (2012) Seismotectonics and seismic hazard studies of Egypt: Ph.D thesis, Geophysical Department Ain Shams University, EgyptGoogle Scholar
  45. El-Hussein I, Deif A, Al-Jabri K, Toksoz N, El-Hady S, Al-Hashmi S, Al-Toubi K, Al-Shijbi Y, Al-Saifi M, Kuleli S (2012) Probabilistic seismic hazard for sultanate of Oman. Nat Hazards 64:173–210. doi: 10.1007/s11069-012-0232-3 CrossRefGoogle Scholar
  46. El-Isa ZH, Al Shanti A (1989) Seismicity and tectonics of the Red Sea and western Arabia. Geophys J 97:449–457CrossRefGoogle Scholar
  47. Endo E, Zahran M, Nofal H, El-Hadidy S (2007) The Saudi national seismic network. Seismol Res Lett 78:439–445CrossRefGoogle Scholar
  48. Fnais FS (2011) Ground-motion simulation for the Eastern province of Saudi Arabia using a stochastic model. WIT Trans Built Environ. doi: 10.2495/ERES110121 Google Scholar
  49. Frankel A (1995) Mapping seismic hazard in the Central Eastern United States. Seismol Res Lett 66(4):8–21CrossRefGoogle Scholar
  50. Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? Bull Seism Soc Am 64:1363–1367Google Scholar
  51. Gasperini P, Lolli B, Castellaro S (2015) Comparative analysis of regression methods used for seismic magnitude conversions. Bull Seism Soc Am 105:1787–1791. doi: 10.1785/0120150018 CrossRefGoogle Scholar
  52. Giardini D, Wiemer S, Fäh D, Deichmann N (2004) Seismic hazard assessment of Switzerland 2004 Version 1.1. Swiss Seismological Service, ETH Zurich, SwitzerlandGoogle Scholar
  53. Goda K, Aspinall W, Taylor CA (2013) Seismic hazard analysis for the UK: sensitivity to spatial seismicity modeling and ground motion prediction equations. Seismol Res Lett 84(1):112–129. doi: 10.1785/0220120064 CrossRefGoogle Scholar
  54. Grünthal G, Wahlström R (2003) An Mw based earthquake catalogue for central, northern and northwestern Europe using a hierarchy of magnitude conversions. J Seismol 7:507–531CrossRefGoogle Scholar
  55. Gutdeutsch R, Castellaro S, Kaiser D (2011) The magnitude conversion problem: further insights. Bull Seism Soc Am 101:379–384. doi: 10.1785/0120090365 CrossRefGoogle Scholar
  56. Gutenberg B, Richter CF (1956) Magnitude and energy of earthquakes. Ann Geofis 9:1–15Google Scholar
  57. Herrmann RB (1977) Recurrence relations. Earthq Notes 48:47–49Google Scholar
  58. Hong HP, Goda K, Davenport AG (2006) Sesimic hazard analysis: a comparative study. Can J Civ Eng 3:1156–1171. doi: 10.1139/L06-062 CrossRefGoogle Scholar
  59. Johnston AC (1996) Seismic moment assessment of earthquakes in stable continental regions—I. Instrumental seismicity. Geophys J Int 124:381–414CrossRefGoogle Scholar
  60. Johnston AC, Coppersmith KJ, Kanter LR, Cornell CA (1994) The earthquakes of stable continental regions: assessment of large earthquake potential. EPRI report TR-102261, Electric Power Research Institute, California, USAGoogle Scholar
  61. Khan Z, El-Emam M, Irfan M, Abdalla J (2013) Probabilistic seismic hazard analysis and spectral acceleration for United Arab Emirates. Nat Hazards 67:569–589. doi: 10.1007/s11069-013-0586-1 CrossRefGoogle Scholar
  62. Kijko A (2004) Estimation of maximum earthquake magnitude Mmax. Pure Appl Geophys 161:1655–1681CrossRefGoogle Scholar
  63. Kijko A (2011) Seismic hazard. In: Gupta HK (ed) Encyclopedia of solid Earth geophysics, 1st edn. Springer, Berlin, pp 1107–1120CrossRefGoogle Scholar
  64. Kijko A, Smit A (2012) Extension of the Aki-Utsu b-value estimator for incomplete catalogs. Bull Seism Soc Am 102:1283–1287. doi: 10.1785/0120110226 CrossRefGoogle Scholar
  65. Klinger Y, Rivera L, Haessler M, Maurin J-C (1999) Active faulting in the Gulf of Aqaba: new knowledge from the Mw 7.3 earthquake of 22 November 1995. Bull Seismol Soc Am 89:1025–1036Google Scholar
  66. Kolathayar S, Sitharam TG (2012) Comprehensive probabilistic hazard analysis of the Andaman-Nicobar regions. Bull Seism Soc Am 102:2063–2076. doi: 10.1785/0120110219 CrossRefGoogle Scholar
  67. Lapajne JK, Šket Motnikar B, Zabukovec B, Zupančič P (1997) Spatially smoothed seismicity modelling of seismic hazard in Slovenia. J Seismol 1:73–85CrossRefGoogle Scholar
  68. Leonard M (2012) Earthquake recurrence parametrization. In: Burbidge DR (ed) The 2012 Australian Earthquake Hazard Map. Geoscience Australia Record 2012/71, pp 27–43Google Scholar
  69. Leonard M, McPherson A, Clark D (2012) Source zonation. In: Burbidge DR (ed) The 2012 Australian Earthquake Hazard Map. Geoscience Australia Record 2012/71, pp 17–26Google Scholar
  70. Leonard M, Burbidge DR, Allen TI, Robinson DJ, McPherson A, Clark D, Collins CDN (2014) The challenges of probabilistic seismic-hazard assessment in stable continental interiors: an Australian example. Bull Seism Soc Am 104:3008–3028. doi: 10.1785/0120130248 CrossRefGoogle Scholar
  71. Lolli B, Gasperini P (2012) A comparison among general orthogonal regression methods applied to earthquake magnitude conversions. Geophys J Int 190:1135–1151. doi: 10.1111/j.1365-246X.2012.05530.x CrossRefGoogle Scholar
  72. Luen B, Stark PB (2012) Poisson tests of declustered catalogs. Geophys J Int 189(1):691–700. doi: 10.1111/j.1365-246X.2012.05400.x CrossRefGoogle Scholar
  73. Marzocchi W, Sandri L (2003) A review and new insights on the estimation of the b-value and its uncertainty. Ann Geophys 46:1271–1282Google Scholar
  74. Marzocchi W, Taroni M (2014) Some thoughts on declustering in probabilistic seismic-hazard analysis. Bull Seism Soc Am 104:1838–1845. doi: 10.1785/0120120300 CrossRefGoogle Scholar
  75. McGuire RK (2001) Deterministic vs. probabilistic earthquake hazard and risks. Soil Dyn Earthq Eng 21:377–384CrossRefGoogle Scholar
  76. McGuire RK (2004) Seismic hazard and risk analysis. Earthquake Engineering Research Institute, Oakland, p 240Google Scholar
  77. Mignan A, Woessner J (2012) Estimating the magnitude of completeness for earthquake catalogs. Community Online Resource for Statistical Seismicity Analysis (CORSSA). doi: 10.5078/corssa-00180805.
  78. Mohamed T, Atkinson GM, Assatourians K (2014) Uncertainty in recurrence rates of large magnitude events due to short historic catalogs. J Seismol 18:565–573. doi: 10.1007/s10950-014-9428-1 CrossRefGoogle Scholar
  79. Mohindra R, Nair AKS, Gupta S, Sur U, Sokolov V (2012) Probabilistic seismic hazard analysis for Yemen. Int J Geophys. doi: 10.1155/2012/304235 Google Scholar
  80. Molina S, Lindholm CD, Bungum H (2001) Probabilistic seismic hazard analysis: zoning free versus zoning methodology. Bolletino di Geifosica Teorica ed Applicata 42(1–2):19–39Google Scholar
  81. Mulargia F, Gasperini P, Tinti S (1987) Contour mapping of Italian seismicity. Tectonophysics 142:202–216CrossRefGoogle Scholar
  82. Musson RMW (1999) Determination of design earthquakes in seismic hazard analysis through Monte Carlo simulation. J Earthq Eng 3(4):463–474Google Scholar
  83. Musson RMW (2004) Joint solution of seismicity parameters for seismic source zones through simulation. Bolletino di Geifosica Teorica ed Applicata 45(1–2):1–13Google Scholar
  84. Musson RMW (2012a) PSHA validated by quazi observational means. Seismol Res Lett 83:130–134. doi: 10.1785/gssrl.83.1.130 CrossRefGoogle Scholar
  85. Musson RMW (2012b) The effect of magnitude uncertainty on earthquake activity rates. Bull Seism Soc Am 102:2771–2775. doi: 10.1785/0120110224 CrossRefGoogle Scholar
  86. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (2004) FEMA 450, 2003 Edition. Building Seismic Safety Council National Institute of Building Sciences, Washngton, DCGoogle Scholar
  87. Pallister JS, McCausland WA, Jónsson S, Lu Zh, Zahran HM, El Hadidy S, Aburukbah A, Stewart ICF, Lundgren PR, White RA, Moufti MRH (2010) Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia. Nat Geosci 3:705–712. doi: 10.1038/ngeo966 CrossRefGoogle Scholar
  88. Pankow KL, Pechmann JC (2004) The SEA99 ground-motion predictive relations for extensional tectonic regimes: revisions and a new peak ground velocity relation. Bull Seism Soc Am 94:341–348CrossRefGoogle Scholar
  89. Pascucci V, Free MW, Lubkowski ZA (2008) Seismic hazard and design requirements for the Arabian Peninsula region. In: Proceedings of the 14th world conference on earthquake engineering, October 12–17, 2008, Beijing, ChinaGoogle Scholar
  90. Peláez Montilla JA, Hamdache M, Casado CL (2003) Seismic hazard in Northern Algeria using spatially smoothed seismicity. Results for peak ground acceleration. Tectonophysics 372:105–110. doi: 10.1016/S0040-1951(03)00234-8 CrossRefGoogle Scholar
  91. Poirier JP, Taher MA (1980) Historical seismicity in the near and middle east, North Africa and Spain from Arabic documents (VIIth–XVIIth century). Bull Seism Soc Am 70(6):2185–2201Google Scholar
  92. Power M, Chiou B, Abrahamson N, Bozorgnia Y, Shantz T, Roblee C (2008) An overview of the NGA project. Earthq Spectra 24(1):3–21CrossRefGoogle Scholar
  93. Ramanna CK, Dodagoudar GR (2012) Seismic hazard analysis using the adaptive kernel density estimation technique for Chennai City. Pure Appl Geophys 169:55–69. doi: 10.1007/s00024-011-0264-8 CrossRefGoogle Scholar
  94. Rawlings JO, Pantula SG, Dickey DA (1998) Applied regression analysis: a research tool. Springer, New York, p 658CrossRefGoogle Scholar
  95. Reasenberg P (1985) Second-order moment of central California seismicity, 1969–82. J Geophys Res 90(5479–5495):3–18Google Scholar
  96. Roobol MJ, Al-Rehaili M, Arab N, Celebi M, Halawani MA, Janjou D, Kazi A, Martin C, Sahl M, Showail A (1999) The Gulf of Aqaba earthquake of 22 November 1995: its effects in Saudi Arabia. Saudi Arabian Deputy Ministry for Mineral Resources technical report BRGM-TR-99-16, 67 p, 49 figs, 4 tables, 1 appendixGoogle Scholar
  97. Saudi Building Code SBC-301-2007 (2007) Loads and forces requirements. Saudi Building Code National CommitteeGoogle Scholar
  98. Scordilis EM (2006) Empirical global relations converting MS and mb to moment magnitude. J Seismol 10:225–236CrossRefGoogle Scholar
  99. Smith WD (2003) Earthquake hazard and risk assessment in New Zealand by Monte Carlo method. Seism Res Lett 74:298–304CrossRefGoogle Scholar
  100. Sokolov V, Wenzel F (2011) Influence of ground-motion correlation on probabilistic assessments of seismic hazard and loss: sensitivity analysis. Bull Earthq Eng 9(5):1339–1360. doi: 10.1007/s10518-011-9264-4 CrossRefGoogle Scholar
  101. Sokolov V, Wenzel F (2013) Spatial correlation of ground-motions in estimating seismic ha zard to civil infrastructure. In: Tesfamariam S, Goda K (eds) Seismic risk analysis and management of civil infrastructure systems. Woodhead Publishing Ltd, Cambridge, pp 57–78. doi: 10.1533/9780857098986.1.57 Google Scholar
  102. Spudich P, Joyner WB, Lindh AG, Boore DM, Margaris BM, Fletcher JB (1999) SEA99: a revised ground motion prediction relation for use in extensional tectonic regimes. Bull Seism Soc Am 89:1156–1170Google Scholar
  103. Stepp JC (1972) Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In: Proceedings of first microzonation conference, Seattle, USA, pp 897–909Google Scholar
  104. Stern RJ, Johnson PR (2010) Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth Sci Rev 101:29–67. doi: 10.1016/JearscireV2010.01.002 CrossRefGoogle Scholar
  105. Stewart ICF (2007) Earthquake risk in western Saudi Arabia and the Red Sea from seismic moment. Saudi Geological Survey technical report SGS-TR-2007-4, 41 p, 32 figsGoogle Scholar
  106. Stock C, Smith EGG (2002) Comparison of seismicity models generated by different kernel estimations. Bull Seism Soc Am 92:913–922CrossRefGoogle Scholar
  107. Stucchi M, Albini P, Mirto C, Rebez A (2004) Assessing the completeness of Italian historical earthquake data. Ann Geophys 47(2/3):659–673Google Scholar
  108. Thenhaus PC, Algermissen ST, Perkins DM, Hanson SL, Diment WH (1989) Probabilistic estimates of the seismic ground-motion hazard in Western Saudi Arabia. U.S. Geological Survey Bulletin 1868, 42 pGoogle Scholar
  109. Tinti S, Mulargia F (1985) Completeness analysis of a seismic catalog. Ann Geophys 3(3):407–414Google Scholar
  110. Tinti S, Rimondi R, Mulargia F (1987) On estimating frequency–magnitude relation from heterogeneous catalogs. Pure Appl Geophys 125:1–18CrossRefGoogle Scholar
  111. Tsang HH (2011) Should we design buildings for lower-probability earthquake ground motion? Nat Hazards 58:853–857. doi: 10.1007/s11069-011-9802-z CrossRefGoogle Scholar
  112. Uhrhammer R (1986) Characteristics of northern and southern California seismicity. Earthq Notes 57:21Google Scholar
  113. Utsu T (1965) A method for determining the value of b in a formula log n = a − bM showing the magnitude–frequency relation for earthquakes. Geophys Bull Hokkaido Univ 13:99–103 (in Japanese with English summary) Google Scholar
  114. Utsu T (1999) Representation and analysis of the earthquake size distribution: a historical review and some new approaches. Pure Appl Geophys 155:509–535CrossRefGoogle Scholar
  115. Vakov AV (1996) Relationships between earthquake magnitude, source geometry and slip mechanism. Tectonophysics 261:97–113CrossRefGoogle Scholar
  116. van Stiphout T, Zhuang J, Marsan D (2012) Seismicity declustering. Community Online Resource for Statistical Seismicity Analysis (CORSSA). doi: 10.5078/corssa-52382934.
  117. Vere-Jones D (1992) Statistical methods for the description and display of earthquake catalogs. In: Walden AT, Guttorp P (eds) Statistics in the environmental and Earth sciences. Edward Arnold, London, pp 220–246Google Scholar
  118. Vita-Finzi C (2001) Neotectonics at the Arabian plate margins. J Struct Geol 23:521–530CrossRefGoogle Scholar
  119. Wang JP, Wu YM, Huang D, Chang SC (2014) A new procedure to best fit earthquake magnitude probability distribution: including an example for Taiwan. Nat Haz 71:837–850. doi: 10.1007/s11069-013-0934-1 CrossRefGoogle Scholar
  120. Weatherill G, Burton PW (2010) An alternative approach to probabilistic seismic hazard analysis in the Aegean region using Monte Carlo simulation. Tectonophysics 492:253–278. doi: 10.1016/j.tecto.2010.06.022 CrossRefGoogle Scholar
  121. Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seism Soc Am 70:1337–1347Google Scholar
  122. Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull Seism Soc Am 90:859–869CrossRefGoogle Scholar
  123. Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull Seism Soc Am 95:648–696. doi: 10.1785/0120040007 CrossRefGoogle Scholar
  124. Woo G (1996) Kernel estimation methods for seismic hazard area source modeling. Bull Seism Soc Am 86:353–362Google Scholar
  125. Woo G (2002) Overlaying uncertainty on maps. In: Proceedings of 12th European conference on earthquake engineering, LondonGoogle Scholar
  126. Zahran HM, McCausland WA, Pallister JS, Lu Zh, El-Hadidy S, Aburukba A, Schawali J, Kadi K, Youssef A, Ewert JW, White RA, Lundgren P, Mufti M, Stewart ICF (2009) Stalled eruption or dike intrusion at Harrat Lunayyir, Saudi Arabia? American Geophysical Union, Fall Meeting, abstract V13E-2072Google Scholar
  127. Zahran HM, Sokolov V, El-Hadidy S, Alraddi WW (2015) Preliminary probabilistic seismic hazard assessment for the Kingdom of Saudi Arabia based on combined areal source model: Monte Carlo approach and sensitivity analyses. Soil Dyn Earthq Eng 77:453–468. doi: 10.1016/j.soildyn.2015.06.011 CrossRefGoogle Scholar
  128. Zare M, Amini H, Yazdi P, Sesetyan K, Demircioglu MB, Kalafat D, Erdik M, Giardini D, Khan MA, Tsereteli N (2014) Recent developments of the Middle East catalog. J Seism 18:749–772. doi: 10.1007/s10950-014-9444-1 CrossRefGoogle Scholar
  129. Zhao JX, Zhang J, Asano A, Ohno Y, Oouchi T, Takahashi T, Ogawa H, Irikura K, Thio HK, Somerville PG, Fukushima Y (2006) Attenuation relations of strong ground motion in Japan using site classifications based on predominant period. Bull Seism Soc Am 96:898–913. doi: 10.1785/0120050122 CrossRefGoogle Scholar
  130. Zhuang J, Ogata Y, Vere-Jones D (2002) Stochastic declustering of space-time earthquake occurrences. J Am Stat Assoc 97(458):369–380CrossRefGoogle Scholar
  131. Zuccolo E, Corigliano M, Lai CG (2013) Probabilistic seismic hazard assessment of Italy using kernel estimation methods. J Seism 17(3):1001–1020. doi: 10.1007/s10950-013-9369-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.National Center for Earthquakes and VolcanoesSaudi Geological SurveyJeddahKingdom of Saudi Arabia
  2. 2.National Research Institute for Astronomy and GeophysicsHelwan, CairoEgypt

Personalised recommendations