Skip to main content

Advertisement

Log in

Seismic vulnerability and risk analysis of the old building stock at urban scale: application to a neighbourhood in Lisbon

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The old buildings represent an important fraction of the urban fabric of the cities, which have implicit societal issues, like safety. This work deals with the seismic vulnerability assessment and risk analysis of the old building stock, with application to a neighbourhood in Lisbon. The studied neighbourhood includes three frequent building typologies in Portugal, i.e. stone masonry, “Placa” and RC buildings. Reference buildings for each typology were numerically modelled using the equivalent frame method. Pushover analysis was then performed to derive the vulnerability characteristics of the reference buildings and more general building classes, i.e. capacity and fragility curves, in order to assess the seismic vulnerability of the buildings and perform a seismic risk analysis. This last analysis was performed to estimate the building damages and the economic and life losses for different earthquake scenarios. Most of the studied buildings are found to be unsafe to the considered seismic actions and will suffer severe damages with associated large losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • ASCE/SEI 41-13 (2014) Seismic evaluation and retrofit of existing buildings. ASCE standard ASCE/SEI 41-13. American Society of Civil Engineers, Reston

  • ATC-40 (1996) Seismic evaluation and retrofit of concrete buildings. Report SSC 96-01. Applied Technology Council, Redwood City

  • Barbat AH, Pujades LG, Lantada N (2008) Seismic damage evaluation in urban areas using the capacity spectrum method: application to Barcelona. Soil Dyn Earthq Eng 28(10–11):851–865. doi:10.1016/j.soildyn.2007.10.006

    Article  Google Scholar 

  • Brignola A, Frumento S, Lagomarsino S, Podestà S (2008) Identification of shear parameters of masonry panels through the in situ diagonal compression test. Int J Archit Herit 3(1):52–73. doi:10.1080/15583050802138634

    Article  Google Scholar 

  • Brookshire DS, Chang SE, Cochrane H, Olson RA, Rose A, Steenson J (1997) Direct and indirect economic losses from earthquake damage. Earthq Spectra 13(4):683–701. doi:10.1193/1.1585975

    Article  Google Scholar 

  • Calvi GM, Pinho R (2004) LESSLOSS—a European integrated project on risk mitigation for earthquakes and landslides, Research Report Rose 2004/02. IUSS Press, Pavia ISBN: 88-7358-020-3

    Google Scholar 

  • Campos Costa A, Sousa ML, Carvalho A, Coelho E (2010) Evaluation of seismic risk and mitigation strategies for the existing building stock: application of LNECloss to the metropolitan area of Lisbon. Bull Earthq Eng 8:119–134. doi:10.1007/s10518-009-9160-3

    Article  Google Scholar 

  • Cardona OD, Ordaz M, Reinoso E, Yamín LE, Barbat AH (2012) CAPRA—comprehensive approach to probabilistic risk assessment: international initiative for risk management effectiveness. In: Proceedings of the 15th world conference on earthquake engineering. CD-ROM, Lisbon

  • Cattari S, Lagomarsino S (2013) Seismic assessment of mixed masonry—reinforced concrete buildings by non-linear static analyses. Earthq Struct 4(3):241–264. doi:10.12989/eas.2013.4.3.241

    Article  Google Scholar 

  • CEN (2004) EN 1998-1:2004, Eurocode 8: design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels

    Google Scholar 

  • CEN (2005a) EN 1996-1-1:2005, Eurocode 6: design of masonry structures—part 1–1: general rules for reinforced and unreinforced masonry structures. European Committee for Standardization, Brussels

    Google Scholar 

  • CEN (2005b) EN 1998-3:2005, Eurocode 8: design of structures for earthquake resistance—part 3: assessment and retrofitting of buildings. European Committee for Standardization, Brussels

    Google Scholar 

  • CSI (2013) SAP2000 v12, integrated software for structural analysis and design. Computers & Structures Inc., Berkeley. http://www.csiamerica.com

  • D’Ayala D (2013) Assessing the seismic vulnerability of masonry buildings. In: Tesfamariam S, Goda K (eds) Handbook of seismic risk analysis and management of civil infrastructure systems. Woodhead Publishing, Sawston, pp 334–365. doi:10.1533/9780857098986.3.334

    Chapter  Google Scholar 

  • ESRI (2009) ArcGIS desktop, release 9.3. Environmental Systems Research Institute, Redlands. http://www.esri.com

  • Fajfar P (2000) A nonlinear analysis method for performance based seismic design. Earthq Spectra 16(3):573–592. doi:10.1193/1.1586128

    Article  Google Scholar 

  • FEMA & NIBS (2003) Multi-hazard loss estimation methodology: earthquake model, HAZUS-MH MR4, Technical manual, Federal Emergency Management, Mitigation Division, Washington

  • FEMA-440 (2005) Improvement of nonlinear static seismic analysis procedures. Federal Emergency Management Agency, Washington

  • Galasco A, Lagomarsino S, Penna A (2006) On the use of pushover analysis for existing masonry buildings. In: Proceedings of the 1st European conference on earthquake engineering and seismology, Paper no. 1080, Geneva

  • Giardini D, Woessner J, Danciu L, Crowley H, Cotton F, Grünthal G et al (2013) Seismic hazard harmonization in Europe (SHARE): online data resource. Swiss Seismological Service, ETH Zurich. doi:10.12686/SED-00000001-SHARE

  • IBC (2008) Norme tecniche per le costruzioni (“Italian building code”), Ministerial Decree dated of 14-01-2008. Ministero delle Infrastrutture e dei Trasporti, Rome (in Italian)

  • INE (2012) Censos—Resultados definitivos: Portugal—2011 (“Final results of the Census of year 2011 for all Portugal”). Instituto Nacional de Estatística, Lisbon. http://censos.ine.pt (in Portuguese)

  • IPQ (2010) NP EN 1998-1:2010, Eurocódigo 8—Projeto de estruturas para resistência aos sismos. Parte 1: Regras gerais, ações sísmicas e regras para edifícios, Instituto Português da Qualidade, Caparica

  • Lagomarsino S, Cattari S (2014) Fragility functions of masonry buildings. In: Pitilakis K, Crowley H, Kaynia A (eds) SYNER-G: typology definition and fragility functions for physical elements at seismic risk. Series on geotechnical, geological and earthquake engineering, vol. 27. Springer, Dordrecht, pp 111–156 (Chapter 5). doi:10.1007/978-94-007-7872-6_5

  • Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthquake Eng 4(4):415–443. doi:10.1007/s10518-006-9024-z

    Article  Google Scholar 

  • Lagomarsino S, Penna A, Galasco A, Cattari S (2013) TREMURI program: an equivalent frame model for the nonlinear seismic analysis of masonry buildings. Eng Struct 56(11):1787–1799. doi:10.1016/j.engstruct.2013.08.002

    Article  Google Scholar 

  • Lamego P (2014) Seismic strengthening of residential buildings: viability of risk mitigation. PhD thesis, University of Minho, Guimarães (in Portuguese). http://www.hms.civil.uminho.pt

  • Lantada N, Irizarry J, Barbat AH, Goula X, Roca A, Susagna T, Pujades LG (2010) Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bull Earthq Eng 8(2):201–229

    Article  Google Scholar 

  • Lourenço PB, Leite JC, Paulo-Pereira MF (2009) Masonry infills and earthquakes. In: Proceedings of the 11th Canadian masonry symposium. CD-ROM, Ontario

  • Lourenço PB, Fernandes FM, Castro F (2010) Handmade clay bricks: chemical, physical and mechanical properties. Int J Archit Herit 4(1):38–58. doi:10.1080/15583050902871092

    Article  Google Scholar 

  • Maio R, Ferreira TM, Vicente R, Estêvão J (2015) Seismic vulnerability assessment of historical urban centres: case study of the old city centre of Faro, Portugal. J Risk Res 19(5):551–580. doi:10.1080/13669877.2014.988285

    Article  Google Scholar 

  • Marques R, Lourenço PB (2011) Possibilities and comparison of structural component models for the seismic assessment of modern unreinforced masonry buildings. Comput Struct 89(21–22):2079–2091. doi:10.1016/j.compstruc.2011.05.021

    Article  Google Scholar 

  • Marques R, Lourenço PB (2014) Unreinforced and confined masonry buildings in seismic regions: validation of macro-element models and cost analysis. Eng Struct 64:52–67. doi:10.1016/j.engstruct.2014.01.014

    Article  Google Scholar 

  • MAT (2008) Portuguese ordinance 1529-A/2008 of 28 December, Gazette of the Republic no. 249, Series 1, Ministries of Environment, Territory Planning and Regional Development, and of Labour and Social Solidarity, Lisbon (in Portuguese)

  • MHOPT (1983) Portuguese codes of safety and actions for building and bridge structures (RSA) and reinforced and prestressed concrete structures (REBAP). Ministry of Habitation, Public Works and Transportation, Imprensa Nacional-Casa da Moeda, Lisbon (in Portuguese)

  • Monteiro M, Bento R (2012) Characterization of ‘Placa’ buildings, Report ICIST DTC no. 02/2012, Instituto de Engenharia de Estruturas, Território e Construção, Instituto Superior Técnico, Lisbon. ISSN: 0871-7869

  • Mouroux P, Le Brun B (2006) Presentation of RISK-UE project. Bull Earthq Eng 4(4):323–339. doi:10.1007/s10518-006-9020-3

    Article  Google Scholar 

  • Novelli VI, D’Ayala D, Makhloufi N, Benouar D, Zekagh A (2015) A procedure for the identification of the seismic vulnerability at territorial scale: application to the Casbah of Algiers. Bull Earthq Eng 13(1):177–202. doi:10.1007/s10518-014-9666-1

    Article  Google Scholar 

  • Oliveira CS (2008) Lisbon earthquake scenarios: a review on uncertainties, from earthquake source to vulnerability modelling. Soil Dyn Earthq Eng 28(10–11):890–913. doi:10.1016/j.soildyn.2007.11.002

    Article  Google Scholar 

  • Pais J, Moniz C, Cabral J, Cardoso J, Legoinha P, Machado S et al (2006) Geological map of Portugal at scale 1:50000: explicative notice of sheet 34-D, Lisbon. Departamento de Geologia, Instituto Nacional de Engenharia, Tecnologia e Inovação, Lisbon (in Portuguese)

  • Park J, Bazzurro P, Baker J (2007) Modeling spatial correlation of ground motion intensity measures for regional seismic hazard and portfolio loss estimation. In: Proceedings of the 10th international conference on application of statistic and probability in civil engineering (ICASP10). CD-ROM, Tokyo

  • Pinho FFS, Baião MFC, Lúcio VJG, Faria P (2008) Experimental research on rubble stone masonry walls. In: Proceedings of the 1st historical mortars conference: characterization, diagnosis, conservation, repair and compatibility. CD-ROM, Lisbon

  • Pitilakis K, Crowley H, Kaynia A (eds) (2014) SYNER-G: typology definition and fragility functions for physical elements at seismic risk. Series on geotechnical, geological and earthquake engineering, vol. 27. Springer, Dordrecht. doi:10.1007/978-94-007-7872-6

  • Ripepe M, Lacanna G, Deguy P, De Stefano M, Mariani V, Tanganelli M (2014) Large-scale seismic vulnerability assessment method for urban centres: an application to the city of Florence. Key Eng Mat 628:49–54. doi:10.4028/www.scientific.net/KEM.628.49

    Article  Google Scholar 

  • Roque JA (2002) Strengthening and structural rehabilitation of ancient masonry walls. MSc thesis, University of Minho, Guimarães (in Portuguese). http://www.hms.civil.uminho.pt

  • Rota M, Penna A, Strobbia CL (2008) Processing Italian damage data to derive typological fragility curves. Soil Dyn Earthq Eng 28(10):933–947. doi:10.1016/j.soildyn.2007.10.010

    Article  Google Scholar 

  • Salgado-Gálvez MA, Carreño ML, Barbat AH, Cardona OD (2015) Probabilistic seismic risk assessment of Lorca through scenario simulations. Rev Internac Métod Numér Cálc Diseñ Ingr 32(2):70–78. doi:10.1016/j.rimni.2014.12.001

    Google Scholar 

  • Santos C, Ferreira TM, Vicente R, Silva JARM (2013) Building typologies identification to support risk mitigation at the urban scale—case study of the old city centre of Seixal, Portugal. J Cult Herit 14(6):449–463. doi:10.1016/j.culher.2012.11.001

    Article  Google Scholar 

  • Sarraz A, Khorshed-Ali M, Chandra-Das D (2015) Seismic vulnerability assessment of existing building stocks at Chandgaon in Chittagong city, Bangladesh. Am J Civ Eng 3(1):1–8. doi:10.11648/j.ajce.20150301.11

    Article  Google Scholar 

  • Shing PB, Stavridis A (2014) Analysis of seismic response of masonry-infilled RC frames through collapse. ACI Struct J 297:1–20

    Google Scholar 

  • Silva V, Crowley H, Varum H, Pinho R (2015) Seismic risk assessment for mainland Portugal. Bull Earthq Eng 13(2):429–457. doi:10.1007/s10518-014-9630-0

    Article  Google Scholar 

  • Simões A, Milošević J, Meireles H, Bento R, Cattari S, Lagomarsino S (2015) Fragility curves for old masonry building types in Lisbon. Bull Earthq Eng 13(10):3083–3105. doi:10.1007/s10518-015-9750-1

    Article  Google Scholar 

  • S.T.A. DATA (2012) 3Muri Software, release 4.0.3, S.T.A. DATA s.r.l., Torino. http://www.3muri.com

  • Turnšek T, Cačovic F (1971) Some experimental results on the strength of brick masonry walls. In: Proceedings of the 2nd international brick masonry conference. Stoke-on-Trent, pp 149–156

  • Vargas YF, Barbat AH, Pujades LG, Hurtado JE (2014) Probabilistic seismic risk evaluation of reinforced concrete buildings. Proc Inst Civ Eng Str B 167(4):327–336. doi:10.1680/stbu.12.00031

    Article  Google Scholar 

  • Vicente RS (2008) Strategies and methodologies for urban rehabilitation interventions: the vulnerability assessment and risk evaluation of the old city centre of Coimbra. PhD thesis, University of Aveiro (in Portuguese)

  • Vicente R, Parodi S, Lagomarsino S, Varum H, Silva JARM (2011) Seismic vulnerability and risk assessment: case study of the historic city centre of Coimbra, Portugal. Bull Earthq Eng 9(4):1067–1096. doi:10.1007/s10518-010-9233-3

    Article  Google Scholar 

  • Vicente R, Ferreira T, Maio T (2014) Seismic risk at the urban scale: assessment, mapping and planning. Proc Econ Finance 18:71–80. doi:10.1016/S2212-5671(14)00915-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly financed by FEDER funds through the Competitivity Factors Operational Programme—COMPETE and by national funds through FCT—Foundation for Science and Technology, within the scope of the Project POCI-01-0145-FEDER-007633. The study was supported by FCT within ISISE, Project UID/ECI/04029/2013. The authors would like to acknowledge the partial support given to this work within the frame of the Research Project PTDC/ECM/101201/2008, funded by FCT. The Postdoc Grant SFRH/BPD/94677/2013 provided by FCT to the last author is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamego, P., Lourenço, P.B., Sousa, M.L. et al. Seismic vulnerability and risk analysis of the old building stock at urban scale: application to a neighbourhood in Lisbon. Bull Earthquake Eng 15, 2901–2937 (2017). https://doi.org/10.1007/s10518-016-0072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-016-0072-8

Keywords

Navigation