Skip to main content
Log in

Nonsmooth dynamic analysis of sticking impacts in rocking structures

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

This paper revisits from a nonsmooth dynamics perspective the contact process encountered in two archetypal rocking structures: the rigid rocking block and the flexible rocking oscillator. The analysis assumes impact is an instantaneous (unilateral) contact, and models the behavior along the normal direction with a set-valued Newton’s law. In the tangential direction it assumes that sliding is prevented. The study formulates both impact and uplifting phenomena as linear complementarity problems (LCPs). The proposed LCP formulation encapsulates all post-impact states and liberates from the need for additional ad-hoc assumptions. The results show that the proposed nonsmooth approach verifies the corresponding results of other studies with reference to the rigid rocking block. Focusing on the flexible rocking oscillator, the proposed model is compared with pertinent analytical, numerical and experimental results from literature. The present study offers original analytical solutions describing all physically feasible post-impact states and confirms, as a special case, existing solutions of rocking initiation. Importantly, the analysis unveils that a given rocking oscillator might choose a different post-impact state (e.g. bouncing, full contact, or immediate rocking) depending on its flexural deformation at the time of impact. Further, it shows that in the case of immediate rocking after impact, the post-impact flexural velocity of the rocking oscillator is not equal with its pre-impact value. The results also reveal the dominant role of the assumed value of the Newton’s coefficient of restitution on the response-history of the rocking oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Acikgoz S, DeJong MJ (2012) The interaction of elasticity and rocking in flexible structures allowed to uplift. Earthq Eng Struct Dyn 41(15):2177–2194

    Google Scholar 

  • Acikgoz S, DeJong MJ (2014) The rocking response of large flexible structures to earthquakes. Bull Earthq Eng 12(2):875–908

    Article  Google Scholar 

  • Acikgoz S, DeJong MJ (2016) Analytical modelling of multi-mass flexible rocking structures. Earthq Eng Struct Dyn. doi:10.1002/eqe.2735

    Google Scholar 

  • Andreaus U, Casini P (1999) Dynamics of three-block assemblies with unilateral deformable contacts. Part 1: contact modelling. Earthq Eng Struct Dyn 28(12):1621–1636

    Article  Google Scholar 

  • Augusti G, Sinopoli A (1992) Modelling the dynamics of large block structures. Meccanica 27(3):195–211

    Article  Google Scholar 

  • Brogliato B (1999) Nonsmooth mechanics: models, dynamics and control. Springer, Berlin

    Book  Google Scholar 

  • Brogliato B, Zhang H, Liu C (2012) Analysis of a generalized kinematic impact law for multibody–multicontact systems, with application to the planar rocking block and chains of balls. Multibody Sys Dyn 27(3):351–382

    Article  Google Scholar 

  • Chen YH, Liao WH, Lee CL, Wang YP (2006) Seismic isolation of viaduct piers by means of a rocking mechanism. Earthq Eng Struct Dyn 35(6):713–736

    Article  Google Scholar 

  • Chopra AK, Yim SCS (1985) Simplified earthquake analysis of structures with foundation uplift. J Struct Eng 111(4):906–930

    Article  Google Scholar 

  • Chopra AK et al (1995) Dynamics of structures, vol 3. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Cottle RW, Dantzig GB (1968) Complementary pivot theory of mathematical programming. Linear Algebra Appl 1(1):103–125

    Article  Google Scholar 

  • DeJong MJ, Dimitrakopoulos EG (2014) Dynamically equivalent rocking structures. Earthq Eng Struct Dyn 43(10):1543–1563

    Article  Google Scholar 

  • Dimitrakopoulos EG (2010) Analysis of a frictional oblique impact observed in skew bridges. Nonlinear Dyn 60(4):575–595

    Article  Google Scholar 

  • Dimitrakopoulos EG (2011) Seismic response analysis of skew bridges with pounding deck–abutment joints. Eng Struct 33(3):813–826

    Article  Google Scholar 

  • Dimitrakopoulos EG, DeJong MJ (2012a) Overturning of retrofitted rocking structures under pulse-type excitations. J Eng Mech 138(8):963–972

    Article  Google Scholar 

  • Dimitrakopoulos EG, DeJong MJ (2012b) Revisiting the rocking block: closed-form solutions and similarity laws. Proc R Soc A 468(2144):2294–2318

    Article  Google Scholar 

  • Dimitrakopoulos EG, Giouvanidis AI (2015) Seismic response analysis of the planar rocking frame. J Eng Mech 141(7):04015,003

    Article  Google Scholar 

  • Giouvanidis AI, Dimitrakopoulos EG (2016) Seismic performance of rocking frames with flag-shaped hysteretic behavior. J Eng Mech. doi:10.1061/(ASCE)EM.1943-7889.0001206

    Google Scholar 

  • Glocker C (2001) Set-valued force laws: dynamics of non-smooth systems, vol 1. Springer, Berlin

    Book  Google Scholar 

  • Housner GW (1963) The behavior of inverted pendulum structures during earthquakes. Bull Seismol Soc Am 53(2):403–417

    Google Scholar 

  • Kalliontzis D, Sritharan S, Schultz A (2016) Improved coefficient of restitution estimation for free rocking members. J Struct Eng 142:06016002

    Article  Google Scholar 

  • Leine R, Van Campen D, Glocker CH (2003) Nonlinear dynamics and modeling of various wooden toys with impact and friction. J Vib Control 9(1–2):25–78

    Article  Google Scholar 

  • Lemke CE (1965) Bimatrix equilibrium points and mathematical programming. Manag Sci 11(7):681–689

    Article  Google Scholar 

  • Lipscombe P, Pellegrino S (1993) Free rocking of prismatic blocks. J Eng Mech 119(7):1387–1410

    Article  Google Scholar 

  • Makris N, Vassiliou MF (2012) Planar rocking response and stability analysis of an array of free-standing columns capped with a freely supported rigid beam. Earthq Eng Struct Dyn 42(3):431–449

    Article  Google Scholar 

  • Meek JW (1975) Effects of foundation tipping on dynamic response. J Struct Div 101(7):1297–1311

    Google Scholar 

  • Oliveto G, Calio I, Greco A (2003) Large displacement behaviour of a structural model with foundation uplift under impulsive and earthquake excitations. Earthq Eng Struct Dyn 32(3):369–393

    Article  Google Scholar 

  • Pampanin S (2012) Reality-check and renewed challenges in earthquake engineering: implementing low-damage structural systems-from theory to practice. Bull N Z Soc Earthq Eng 45(4):137–160

    Google Scholar 

  • Payr M, Glocker C (2005) Oblique frictional impact of a bar: analysis and comparison of different impact laws. Nonlinear Dyn 41(4):361–383

    Article  Google Scholar 

  • Pfeiffer F, Glocker C (2000) Multibody dynamics with unilateral contacts, vol 421. Springer Science & Business Media, Berlin

    Google Scholar 

  • Priestley MN, Seible F, Calvi GM (1996) Seismic design and retrofit of bridges. Wiley, London

    Book  Google Scholar 

  • Prieto F, Lourenço PB, Oliveira C (2004) Impulsive Dirac-delta forces in the rocking motion. Earthq Eng Struct Dyn 33(7):839–857

    Article  Google Scholar 

  • Psycharis IN (1991) Effect of base uplift on dynamic response of SDOF structures. J Struct Eng 117(3):733–754

    Article  Google Scholar 

  • Ricker N (1943) Further developments in the wavelet theory of seismogram structure. Bull Seismol Soc Am 33(3):197–228

    Google Scholar 

  • Ricker N (1944) Wavelet functions and their polynomials. Geophysics 9(3):314–323

    Article  Google Scholar 

  • Routledge PJ, Cowan MJ, Palermo A (2016) Low-damage detailing for bridges—a case study of Wigram–Magdala bridge. In: Proceedings, New Zealand society for earthquake engineering 2016 conference. Christchurch

  • Shenton HW III, Jones NP (1991) Base excitation of rigid bodies. I: formulation. J Eng Mech 117(10):2286–2306

    Article  Google Scholar 

  • Skinner R, Tyler R, Heine A, Robinson W (1980) Hysteretic dampers for the protection of structures from earthquakes. Bull N Z Natl Soc Earthq Eng 13(1):22–36

    Google Scholar 

  • Truniger R, Vassiliou MF, Stojadinović B (2015) An analytical model of a deformable cantilever structure rocking on a rigid surface: experimental validation. Earthq Eng Struct Dyn 44(15):2795–2815

    Article  Google Scholar 

  • Vassiliou MF, Mackie KR, Stojadinović B (2014) Dynamic response analysis of solitary flexible rocking bodies: modeling and behavior under pulse-like ground excitation. Earthq Eng Struct Dyn 43(10):1463–1481

    Article  Google Scholar 

  • Vassiliou MF, Truniger R, Stojadinović B (2015) An analytical model of a deformable cantilever structure rocking on a rigid surface: development and verification. Earthq Eng Struct Dyn 44(15):2775–2794

    Article  Google Scholar 

  • Vassiliou MF, Mackie KR, Stojadinović B (2016) A finite element model for seismic response analysis of deformable rocking frames. Earthq Eng Struct Dyn. doi:10.1002/eqe.2799

    Google Scholar 

  • Yilmaz C, Gharib M, Hurmuzlu Y (2009) Solving frictionless rocking block problem with multiple impacts. Proc R Soc A. doi:10.1098/rspa.2009.0273

    Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Research Grants Council of Hong Kong, under Grant Reference Number ECS 639613. The authors would like to thank Dr. Michalis F. Vassiliou for sharing part of the numerical and experimental results reported in Truniger et al. (2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias G. Dimitrakopoulos.

Appendix: Analytical derivation of the equations of motion

Appendix: Analytical derivation of the equations of motion

Consider a rocking oscillator (Fig. 1b) with a concentrated mass m on top, a total column mass \(m_c\) uniformly distributed along its length and a rigid base with mass \(m_b\). Assume the lumped mass m creates no moment of inertia, while the rigid base creates moment of inertia with respect to its center of mass equal to \({I_{{m_b}}} = {m_b}{\rho ^2}\), where \(\rho\) is the radius of gyration of the base. Following Vassiliou et al. (2015), Chopra et al. (1995) the shape function that describes the deformation of the column is:

$$\begin{aligned} \psi \left( \xi \right) = \frac{{3{\xi ^2}}}{{2{h^2}}} - \frac{{{\xi ^3}}}{{2{h^3}}} \end{aligned}$$
(48)

where \(\xi\) is the distance measured from the base of the column (Fig. 1b). Therefore, the deformation of the column at any arbitrary point is defined as: \({u_\xi }\left( {\xi ,t} \right) = u\left( t \right) \psi \left( \xi \right)\), where \(u\left( t \right)\) denotes the generalized coordinate.

Before rocking initiates, the oscillator behaves as a generalized single degree of freedom system with generalized mass and stiffness respectively (Vassiliou et al. 2015):

$$\begin{aligned} {\tilde{m}}&= m + \int \limits _0^h {\frac{{{m_c}}}{h}{\left( {\psi \left( \xi \right) } \right) } ^2 d\xi } = m + \frac{{33}}{{140}}{m_c}\nonumber \\ {\tilde{k}}&= \int \limits _0^h {EI{{{\left( {\psi ^{\prime \prime } \left( \xi \right) } \right) }^2}}d\xi } = \frac{{3EI}}{{{h^3}}} \end{aligned}$$
(49)

After the initiation of rocking, the generalized coordinates vector for the planar rocking motion of the flexible rocking oscillator becomes: \({\mathbf{q}} = \left[ {\begin{array}{cccc} u&x&y&\phi \end{array}} \right] ^T\) (Fig. 1b). Therefore, at an arbitrary time-instant, the position of the lumped mass (\(X_m\), \(Y_m\)), any point along the column (\(X_{{m_c}}\), \(Y_{{m_c}}\)) and of the midpoint of the rigid base (\(X_{{m_b}}\), \(Y_{{m_b}}\)) become respectively (Fig. 1b):

$$\begin{aligned} {X_m}&= {u_g}\left( t\right) + x - h\sin \phi + u\cos \phi \nonumber \\ {Y_m}&= y + h\cos \phi + u\sin \phi \nonumber \\ {X_{{m_c}}}&= {u_g}\left( t\right) + x - \xi \sin \phi + u\psi \cos \phi \nonumber \\ {Y_{{m_c}}}&= y + \xi \cos \phi + u\psi \sin \phi \nonumber \\ {X_{{m_b}}}&= {u_g}\left( t\right) + x \nonumber \\ {Y_{{m_b}}}&= y \end{aligned}$$
(50)

where \(u_g\left( t\right)\) denotes the ground displacement measured from a reference point on the ground.

The equations of motion of the flexible rocking oscillator can be derived using the general form of the Lagrange’s equation:

$$\begin{aligned} \frac{d}{{dt}}\left( {\frac{{\partial L}}{{\partial {\dot{\phi }} }}} \right) - \frac{{\partial L}}{{\partial \phi }} = Q \end{aligned}$$
(51)

where \(L = T - V\), with T the kinetic energy, V the potential energy and Q the generalized force. In particular, assuming positive (counter-clockwise) rotations, the kinetic energy of the system is:

$$\begin{aligned} T&= \frac{1}{2}m\left( \begin{array}{l} {h^2}{{\dot{\phi }}^2} + {{{\dot{u}}}^2} + {u^2}{{\dot{\phi }}^2} - 2h{\dot{u}}{\dot{\phi }} + {\dot{x}}^{2} - 2h{\dot{x}}\cos \phi {\dot{\phi }} + 2{\dot{x}}{\dot{u}}\cos \phi \\ -\, 2{\dot{x}}u\sin \phi {\dot{\phi }} + {\dot{y}}^{2} - 2h{\dot{y}}\sin \phi {\dot{\phi }} + 2{\dot{y}}{\dot{u}}\sin \phi + 2{\dot{y}}u\cos \phi {\dot{\phi }} \\ +\, {{{\dot{u}}}_g}^2 + 2{{{\dot{u}}}_g}{\dot{x}} - 2h{{{\dot{u}}}_g}\cos \phi {\dot{\phi }} + 2{{{\dot{u}}}_g}{\dot{u}}\cos \phi - 2{{{\dot{u}}}_g}u\sin \phi {\dot{\phi }} \end{array} \right) \nonumber \\&\quad +\, \frac{1}{2}{I_{{m_b}}}{{\dot{\phi }}^2} + \frac{1}{2}{m_b}\left( {{{{\dot{u}}}_g}^2 + 2{\dot{x}}{{{\dot{u}}}_g} + {\dot{x}}^{2} + {\dot{y}}^{2}} \right) \nonumber \\&\quad +\, \frac{1}{2}{m_c}\left( \begin{array}{l} \frac{{{h^2}}}{3}{{\dot{\phi }}^2} + \frac{{33}}{{140}}{{{\dot{u}}}^2} + \frac{{33}}{{140}}{u^2}{{\dot{\phi }}^2} - \frac{{11}}{{20}}h{\dot{u}}{\dot{\phi }} + {\dot{x}}^{2} - h{\dot{x}}\cos \phi {\dot{\phi }} + \frac{{3}}{{4}}{\dot{x}}{\dot{u}}\cos \phi \\ - \frac{{3}}{{4}}{\dot{x}}u\sin \phi {\dot{\phi }} + {\dot{y}}^{2} - h{\dot{y}}\sin \phi {\dot{\phi }} + \frac{{3}}{{4}}{\dot{y}}{\dot{u}}\sin \phi + \frac{{3}}{{4}}{\dot{y}}u\cos \phi {\dot{\phi }} \\ +\, {{{\dot{u}}}_g}^2 + 2{{{\dot{u}}}_g}{\dot{x}} - h{{{\dot{u}}}_g}\cos \phi {\dot{\phi }} + \frac{{3}}{{4}}{{{\dot{u}}}_g}{\dot{u}}\cos \phi - \frac{{3}}{{4}}{{{\dot{u}}}_g}u\sin \phi {\dot{\phi }} \end{array} \right) \end{aligned}$$
(52)

The potential energy due to the gravitational forces and the strain energy of the system becomes:

$$\begin{aligned} V&= \frac{1}{2} {\tilde{k}}{u^2} + mg\left( {y + h\cos \phi + u\sin \phi } \right) + {m_b}gy\nonumber \\&\quad +\, {m_c}g\left( {y + \frac{h}{2}\cos \phi + \frac{{3}}{{8}}u\sin \phi } \right) \end{aligned}$$
(53)

Finally, the work done by the non-conservative forces gives the generalized force Q:

$$\begin{aligned} {\delta } {W_{nc}} = Q{\delta } u = - 2{\zeta } \sqrt{{\tilde{m}}{\tilde{k}}} {{\dot{u}}}{\delta } u \end{aligned}$$
(54)

where \(\zeta\) is the (structural) damping ratio responsible for the energy dissipation while the structure vibrates.

After substituting Eqs. (52), (53) and (54) into Eq. (51), the equations of motion of the flexible rocking oscillator become:

$$\begin{aligned} \left\{ \begin{array}{l} \left( {m + \frac{{33}}{{140}}{m_c}} \right) {\ddot{u}} + \left( {m + \frac{3}{8}{m_c}} \right) \cos \phi {\ddot{x}} + \left( {m + \frac{3}{8}{m_c}} \right) \sin \phi {\ddot{y}} - \left( {m + \frac{{11}}{{40}}{m_c}} \right) h{\ddot{\phi }} \\ =- 2\zeta \sqrt{{\tilde{m}} {\tilde{k}}} {{\dot{u}}} - {\tilde{k}}u + \left( {m + \frac{{33}}{{140}}{m_c}} \right) u{{\dot{\phi }}^2} - \left( {m + \frac{3}{8}{m_c}} \right) \cos \phi {{\ddot{u}}_g} - \left( {m + \frac{3}{8}{m_c}} \right) \sin \phi {g}\\ \\ \left( {m + \frac{3}{8}{m_c}} \right) \cos \phi {\ddot{u}} + \left( {m + {m_b} + {m_c}} \right) {\ddot{x}}\\ -\, \left( {mh\cos \phi + mu\sin \phi + \frac{1}{2}{m_c}h\cos \phi + \frac{3}{8}{m_c}u\sin \phi } \right) {\ddot{\phi }} \\= - \left( {mh\sin \phi - mu\cos \phi + \frac{1}{2}{m_c}h\sin \phi - \frac{3}{8}{m_c}u\cos \phi } \right) {{\dot{\phi }}^2}\\ +\, 2\left( {m + \frac{3}{8}{m_c}} \right) \sin \phi {\dot{u}}{\dot{\phi }} - \left( {m + {m_b} + {m_c}} \right) {{\ddot{u}}_g}\\ \\ \left( {m + \frac{3}{8}{m_c}} \right) \sin \phi {\ddot{u}} + \left( {m + {m_b} + {m_c}} \right) {\ddot{y}}\\ +\, \left( { - mh\sin \phi + mu\cos \phi - \frac{1}{2}{m_c}h\sin \phi + \frac{3}{8}{m_c}u\cos \phi } \right) {\ddot{\phi }} \\= \left( {mh\cos \phi + mu\sin \phi + \frac{1}{2}{m_c}h\cos \phi + \frac{3}{8}{m_c}u\sin \phi } \right) {{\dot{\phi }}^2}\\ -\, 2\left( {m + \frac{3}{8}{m_c}} \right) \cos \phi {{\dot{u}}}{\dot{\phi }} - \left( {m + {m_b} + {m_c}} \right) g\\ \\ -\, \left( {m + \frac{{11}}{{40}}{m_c}} \right) h{\ddot{u}} - \left( {mh\cos \phi + mu\sin \phi + \frac{1}{2}{m_c}h\cos \phi + \frac{3}{8}{m_c}u\sin \phi } \right) {\ddot{x}}\\ +\, \left( { - mh\sin \phi + mu\cos \phi - \frac{1}{2}{m_c}h\sin \phi + \frac{3}{8}{m_c}u\cos \phi } \right) {\ddot{y}}\\ +\, \left( {{I_{{m_b}}} + m{h^2} + \frac{1}{3}{m_c}{h^2} +\left( m + \frac{{33}}{{140}}{m_c}\right) {u^2}} \right) {\ddot{\phi }} \\= - 2\left( {m + \frac{{33}}{{140}}{m_c}} \right) u{{\dot{u}}}{\dot{\phi }} + \left( {mh\cos \phi + mu\sin \phi + \frac{1}{2}{m_c}h\cos \phi + \frac{3}{8}{m_c}u\sin \phi } \right) {{\ddot{u}}_g}\\ -\, g\left( { - mh\sin \phi + mu\cos \phi - \frac{1}{2}{m_c}h\sin \phi + \frac{3}{8}{m_c}u\cos \phi } \right) \end{array} \right. \end{aligned}$$
(55)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giouvanidis, A.I., Dimitrakopoulos, E.G. Nonsmooth dynamic analysis of sticking impacts in rocking structures. Bull Earthquake Eng 15, 2273–2304 (2017). https://doi.org/10.1007/s10518-016-0068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-016-0068-4

Keywords

Navigation