Skip to main content
Log in

A methodology to determine the response modification factor for probabilistic performance-based design

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

In this study, a methodology to determine the response modification factor is presented. The main goals are to achieve a given probabilistic performance objective and to bring economy to the resultant design. The proposed methodology allows to determine the maximum value of the response modification factor of a building for a desired probabilistic performance objective. A probabilistic performance objective is expressed in terms of an allowable non-performance probability for a given performance level conditioned on the seismic intensity corresponding to a specific hazard level. The methodology is used to determine the response modification factors of special moment resisting perimeter frames for three probabilistic performance objectives. By using both parametric and regression analyses, for each of three objectives, a new analytical expression for calculation of the response modification factor is proposed. To evaluate the proposed response modification factor expressions, four example buildings are employed. The example buildings are optimally designed for the response modification factor obtained from the expressions. The results reveal that the proposed response modification factor expressions can efficiently convert the force-based design method to a direct probabilistic performance-based design procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • ANSI, AISC 360-10 (2010) Specification for structural steel buildings. American Institute of Steel Construction, Chicago

    Google Scholar 

  • ANSI/AISC 341-10 (2010) Seismic provisions for structural steel buildings. American Institute of Steel Construction, Chicago

    Google Scholar 

  • ASCE, SEI 7-10 (2010) Minimum design loads for building and other structures. American Society of Civil Engineers, Reston, VA

    Google Scholar 

  • ATC-19 (1995) Structural response modification factors. Applied Technology Council, Redwood City

    Google Scholar 

  • ATC-3-06 (1978) Tentative provisions for the development of seismic regulations for buildings. Applied Technology Council, Redwood City

    Google Scholar 

  • ATC-34 (1995) A critical review of current approaches to earthquake resistance design. Applied Technology Council, Redwood City

    Google Scholar 

  • Azarbakht A, Dolsek M (2007) Prediction of the median IDA curve by employing a limited number of ground motion records. Earthq Eng Struct Dyn 36(15):2401–2421. doi:10.1002/eqe.740

    Article  Google Scholar 

  • Azarbakht A, Dolsek M (2011) Progressive incremental dynamic analysis for first- mode dominated structures. J Struct Eng 137(3):445–455. doi:10.1061/(ASCE)ST.1943-541X.0000282

    Article  Google Scholar 

  • Barnett V (1978) The study of outliers: purpose and model. J Appl Stat 27:242–250

    Article  Google Scholar 

  • Barnett V, Lewis T (1995) Outliers in statistical data. Wiley, Chichester

    Google Scholar 

  • Castiglioni CA, Zambrano A (2010) Determination of the behaviour factor of steel moment-resisting (MR) frames by a damage accumulation approach. J Constr Steel Res 66:723–735. doi:10.1016/j.jcsr.2009.11.002

    Article  Google Scholar 

  • Celarec D, Dolšek M (2013) the impact of modelling uncertainties on the seismic performance assessment of reinforced concrete frame buildings. Eng Struct 52:340–354

    Article  Google Scholar 

  • Celik OC, Ellingwood BR (2010) Seismic fragilities for non-ductile reinforced concrete frames – Role of aleatoric and epistemic uncertainties. Struct Saf 32:1–12. doi:10.1016/j.strusafe.2009.04.003

    Article  Google Scholar 

  • Chatterjee S, Hadi AS, Price B (2000) Regression analysis by example, 3rd edn. Wiley, New York

    Google Scholar 

  • Costa A, Romão X, Oliveira CSA (2010) Methodology for the probabilistic assessment of behaviour factors. Bull Earthq Eng 8:47–64. doi:10.1007/s10518-009-9126-5

    Article  Google Scholar 

  • Dolsek M, Fajfar P (2007) Simplified probabilistic seismic performance assessment of plan-asymmetric buildings. Earthq Eng Struct Dyn 36(13):2021–2041. doi:10.1002/eqe.697

    Article  Google Scholar 

  • Ellingwood BR (2001) Earthquake risk for building structures. Reliab Eng Syst Saf 74(3):251–262

    Article  Google Scholar 

  • Ellingwood BR, Kinali K (2009) Quantifying and communicating uncertainty in seismic risk assessment. Struct Saf 31:179–187. doi:10.1016/j.strusafe.2008.06.001

    Article  Google Scholar 

  • Ellingwood BR, Galambos TV, MacGregor JG, Cornell CA (1980) Development of a Probability-Based Load Criterion for American National Standard A58. National Bureau of Standards, Washington, p 222

    Google Scholar 

  • Ellingwood BR, Celik OC, Kinali K (2007) Fragility assessment of building structural systems in Mid-America. Earthq Eng Struct Dyn 36:1935–1952. doi:10.1002/eqe.693

    Article  Google Scholar 

  • Erbatur F, Al-Hussainy MM (1992) Optimum design of frames. Comput Struct 45:887–891

    Article  Google Scholar 

  • Fathi M, Daneshjoo F, Melchers RE (2006) A method for determining the behaviour factor of moment-resisting steel frames with semi-rigid connections. Eng Struct 28:514–531. doi:10.1016/j.engstruct.2005.09.006

    Article  Google Scholar 

  • FEMA P695 (2009) Quantification of building seismic performance factors federal emergency management agency. Federal Emergency Management Agency, Washington

    Google Scholar 

  • FEMA-273 (1997) NEHRP guidelines for seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington

    Google Scholar 

  • FEMA-302 (1997) NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. Federal Emergency Management Agency, Washington

    Google Scholar 

  • FEMA-350 (2000) Recommended Seismic design criteria for new moment-resisting steel frame construction. Federal Emergency Management Agency, Washington

    Google Scholar 

  • Ferraioli M, Lavino A, Mandara A (2014) Behaviour factor of code-designed steel moment-resisting frames. Int J Steel Struct 14(2):243–254. doi:10.1007/s13296-014-2005-1

    Article  Google Scholar 

  • Fragiadakis M, Vamvatsikos D (2010) Fast performance uncertainty estimation via pushover and approximate IDA. Earthq Eng Struct Dyn 39:683–703. doi:10.1002/eqe.965

    Google Scholar 

  • Goldberg DE (1989) Genetic Algorithms in Search, optimization and machine learning. Addison Wesley, Boston

    Google Scholar 

  • Grecea D, Dinu F, Dubina D (2004) Performance criteria for MR steel frames in seismic zones. J Constr Steel Res 60:739–749. doi:10.1016/S0143-974X(03)00140-8

    Article  Google Scholar 

  • Gupta A, Krawinkler H (1999) Seismic Demands for Performance Evaluation of Steel Moment Resisting Frame Structures. Technical Report 132, The John A. Blume Earthquake Engineering Research Center, Department of Civil Engineering, Stanford University, Stanford

  • Han SW, Chopra AK (2006) Approximate incremental dynamic analysis using the modal pushover analysis procedure. Earthq Eng Struct Dyn 35(15):1853–1873. doi:10.1002/eqe.605

    Article  Google Scholar 

  • Hasançebi O, Azad SK (2012) An exponential big bang-big crunch algorithm for discrete design optimization of steel frames. Comput Struct 110–111:167–179. doi:10.1016/j.compstruc.2012.07.014

    Article  Google Scholar 

  • Hawkins DM (1980) Identification of outliers. Chapman & Hall, London

    Book  Google Scholar 

  • Holland JH (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Ibarra LF, Medina RA, Krawinkler H (2005) Hysteretic models that incorporate strength and stiffness deterioration. Earthq Eng Struct Dyn 34(12):1489–1511. doi:10.1002/eqe.495

    Article  Google Scholar 

  • Kang CK, Choi BJ (2011) New approach to evaluate the response modification factors for steel moment resisting frames. Int J Steel Struct 11(3):275–286. doi:10.1007/s13296-011-3003-1

    Article  Google Scholar 

  • Karavasilis TL, Bazeos N, Beskos DE (2007) Behavior factor for performance-based seismic design of plane steel moment resisting frames. J Earthq Eng 11:531–559. doi:10.1080/13632460601031284

    Article  Google Scholar 

  • Kaveh A, Rahami H (2006) Analysis, design and optimization of structures using force method and genetic algorithm. Int J Numer Methods Eng 65(10):1570–1584

    Article  Google Scholar 

  • Kaveh A, Talataharib S (2010) Charged system search for optimum grillage system design using the LRFD-AISC code. J Constr Steel Res 66:767–771. doi:10.1016/j.jcsr.2010.01.007

    Article  Google Scholar 

  • Kinali K, Ellingwood BR (2007) Seismic fragility assessment of steel frames for consequence-based engineering: a case study for Memphis, TN. Eng Struct 29:1115–1127. doi:10.1016/j.engstruct.2006.08.017

    Article  Google Scholar 

  • Krawinkler H (2000) State of art report on systems performance of moment resisting steel frames subject to earthquake ground shaking SAC report no. 355C. Washington

  • Lagaros ND, Fragiadakis M, Papadrakakis M, Tsompanakis Y (2006) Structural optimization: a tool for evaluating seismic design procedures. Eng Struct 28:1623–1633. doi:10.1016/j.engstruct.2006.02.014

    Article  Google Scholar 

  • Lagaros ND, Garavelas AT, Papadrakakis M (2008) Innovative seismic design optimization with reliability constraints. Comput Methods Appl Mech Eng 198:28–41. doi:10.1016/j.cma.2007.12.025

    Article  Google Scholar 

  • Liel AB, Haselton CB, Deierlein GG, Baker JW (2009) Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Struct Saf 31:197–211. doi:10.1016/j.strusafe.2008.06.002

    Article  Google Scholar 

  • Lignos DG, Krawinkler H (2011) Deterioration modeling of steel components in supportof collapse prediction of steel moment frames under earthquake loading. J Struct Eng 137(11):1291–1302. doi:10.1061/(ASCE)ST.1943-541X.0000376

    Article  Google Scholar 

  • Lin KC, Lin CC, Chen JY, Chang HY (2010) Seismic reliability of steel framed buildings. Struct Saf 32:174–182. doi:10.1016/j.strusafe.2009.11.001

    Article  Google Scholar 

  • Liu M, Burns SA, Wen YK (2003) Optimal seismic design of steel frame buildings based on life cycle cost considerations. Earthq Eng Struct Dyn 32(9):1313–1332

    Article  Google Scholar 

  • Mazzoni S, McKenna F, Scott MH et al. (2007) Opensees command language manual

  • Mitropoulou CC, Lagaros ND, Papadrakakis M (2011) Life-cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions. Reliab Eng Syst Saf 96:1311–1331. doi:10.1016/j.ress.2011.04.002

    Article  Google Scholar 

  • Perus I, Klinc R, Dolenc M, Dolsek M (2012) A web-based methodology for the prediction of approximate IDA curves. Earthq Eng Struct Dyn 42(1):43–60. doi:10.1002/eqe.2192

    Article  Google Scholar 

  • Pourgharibshahi A, Taghikhany T (2012) Department Reliability-based assessment of deteriorating steel moment resisting frames. J Constr Steel Res 71:219–230. doi:10.1016/j.jcsr.2011.07.019

    Article  Google Scholar 

  • Rahami H, Kaveh A, Gholipour Y (2008) Sizing, geometry and topology optimization of trusses via force method and genetic algorithm. Eng Struct 30(9):2360–2369

    Article  Google Scholar 

  • Rajeev P, Tesfamariam S (2012) Seismic fragilities of non-ductile reinforced concrete frames with consideration of soil structure interaction. Soil Dyn Earthq Eng 40:78–86

    Article  Google Scholar 

  • Rojas HA, Pezeshk S, Foley CM (2007) Performance-based optimization considering both structural and nonstructural components. Earthq Spectra 23(3):685–709

    Article  Google Scholar 

  • Saka MP (1991) Optimum design of steel frames with stability constraints. Comput Struct 41:1365–1377

    Article  Google Scholar 

  • Shome N, Cornell CA (1999) Probabilistic seismic demand analysis of non-linear structures. Report No. RMS-35, Stanford University, Stanford

  • Tabak EI (1981) Wright PM Optimality criteria method for building frames. J Struct Div 107:1327–1342

    Google Scholar 

  • Vamvatsikos D, Cornell CA (2002) Incremental dynamic analysis. Earthq Eng Struct Dyn 31:491–514. doi:10.1002/eqe.141

    Article  Google Scholar 

  • Vamvatsikos D, Cornell CA (2005) Direct estimation of seismic demand and capacity of multidegree-of-freedom systems through incremental dynamic analysis of single degree of freedom approximation. J Struct Eng 131(4):589–599. doi:10.1061/(ASCE)0733-9445(2005)131:4(589)

    Article  Google Scholar 

  • Vamvatsikos D, Cornell CA (2006) Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA. Earthq Eng Struct Dyn 35:1097–1117. doi:10.1002/eqe.573

    Article  Google Scholar 

  • Vigh LG, Deierlein GG, Miranda E, Liel AB, Tipping S (2013) Seismic performance assessment of steel corrugated shear wall system using non-linear analysis. J Constr Steel Res 85:48–59. doi:10.1016/j.jcsr.2013.02.008

    Article  Google Scholar 

  • Zacharenaki AE, Fragiadakis M, Papadrakakis M (2013) Reliability-based optimum seismic design of structures using simplified performance estimation methods. Eng Struct 52:707–717. doi:10.1016/j.engstruct.2013.03.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Miri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarahmadi, H., Miri, M. & Rakhshanimehr, M. A methodology to determine the response modification factor for probabilistic performance-based design. Bull Earthquake Eng 15, 1739–1769 (2017). https://doi.org/10.1007/s10518-016-0044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-016-0044-z

Keywords

Navigation