Skip to main content
Log in

Centrifuge modeling of batter pile foundations under sinusoidal dynamic excitation

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Batter pile (or inclined pile) foundations are widely used in civil engineering structures. However, their behavior under dynamic loadings is not yet thoroughly understood. This paper presents an experimental work on the behavior of batter and vertical piles considering dynamic soil-pile-superstructure interactions. A series of dynamic centrifuge tests were performed using sinusoidal excitations. The influence of the base shaking (frequency content and amplitude) and of the height of the center of gravity of the superstructure is investigated. Seismic responses are analyzed considering the pile cap displacements and forces (total base shear, overturning and residual moments, axial forces). It is found that in certain cases batter piles play a beneficial role on the dynamic behavior of the pile foundation system. This novel experimental work provides an important database on the behavior of batter pile foundations under dynamic loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Notes

  1. The thin aluminum plate is used to maintain precisely the inclination angle of 15°.

  2. The steel rods and plastic wire are used to minimize the impact of sand during pluviation. During the pluviation, when the sand surface is about 5 cm higher than the tips of the piles, the wires are cut to free the pile tips. After the sand surface arrives at the prescribed height, the pluviation stops and the steel rods are removed.

  3. Shadowing effect: during sand pluviation the presence of items can influence the falling of sand into the container and thus affect the homogeneity of the sand deposit.

  4. Comparison with the maximum accelerations and displacements measured from free field tests showed that these accelerometers measurements are representative of free field conditions and are not influenced by the pile group.

Abbreviations

DSPSI:

Dynamic soil-pile-superstructure interaction

C.G.:

Center of gravity of the superstructure

IS:

Inclined (batter) pile group with short superstructure

VS:

Vertical pile group with short superstructure

ITT:

Inclined (batter) pile group with tall superstructure

VTT:

Vertical pile group with tall superstructure

P7:

One pile in the 1 × 2 pile group, on the ‘Porte’ side

P8:

One pile in the 1 × 2 pile group, on the ‘Pivot’ side

BS:

Base shear

OM:

Overturning moment acted on the foundation

RBM:

Residual bending moment

RBMmax :

Maximum residual bending moment

RBMP7 :

Residual bending moment of P7

RBMP7max,VS :

Maximum residual bending moment of P7 in vertical pile group with short superstructure

M:

Total bending moment

MP7 :

Total bending moment of P7

MP7max,VS :

Maximum total bending moment of P7 in vertical pile group with short superstructure

N:

Axial force

NP7 :

Axial force in pile P7

NP7max,VS :

Maximum axial force in pile P7 in vertical pile group with short superstructure

z:

Depth of the pile

D:

External diameter of the pile

Dpile :

Center-to-center distance between piles

References

  • Association française du génie parasismique (AFPS) (1990) Recommandations AFPS 90. Presses des Ponts et Chaussées

  • Arias A (1970) A measure of earthquake intensity. In: Hansen R (ed) Seismic design for nuclear power plants. MIT Press, Cambridge, MA, pp 438–483

    Google Scholar 

  • Beatty CI (1970) Lateral test on pile groups. Found Facts 6(1):18–21

    Google Scholar 

  • Berrill JB, Christensen SA, Keenan RP, Okada W, Pettinga JR (2001) Case study of lateral spreading forces on a piled foundation. Géotechnique 51(6):501–517. doi:10.1680/geot.2001.51.6.501

    Article  Google Scholar 

  • Chazelas JL, Escoffier S, Garnier J, Thorel L, Rault G (2008) Original technologies for proven performances for the new LCPC earthquake simulator. Bull Earthq Eng 6(4):723–728. doi:10.1007/s10518-008-9096-z

    Article  Google Scholar 

  • Escoffier S (2011) Seismic and sinusoidal tests on pile group. Technical report, IFSTTAR

  • Escoffier S (2012) Experimental study of the effect of inclined pile on the seismic behavior of pile group. Soil Dyn Earthq Eng 42:275–291. doi:10.1016/j.soildyn.2012.06.007

    Article  Google Scholar 

  • Escoffier S, Chazelas JL, Garnier J (2008) Centrifuge modelling of raked piles. Bull Earthq Eng 6(4):689–704. doi:10.1007/s10518-008-9094-1

    Article  Google Scholar 

  • Eurocode8 (2003) Eurocode 8: design of structures for earthquake resistance—Part 5: Foundations, retaining structures and geotechnical aspects. European Committee for Standardization (CEN), Belgium

  • Gazetas G, Mylonakis G (1998) Seismic soil-structure interaction: new evidence and emerging issues. Proceedings of Geotech Earthq Eng Soil Dyn III, pp 1119–1174

  • Gerolymos N, Giannakou A, Anastasopoulos I, Gazetas G (2008) Evidence of beneficial role of inclined piles: observations and summary of numerical analyses. Bull Earthq Eng 6:705–722. doi:10.1007/s10518-008-9085-2

    Article  Google Scholar 

  • Giannakou AK (2007) Seismic behavior of inclined piles. Ph.D Dissertation, National Technical University of Athens

  • Giannakou A, Gerolymos N, Gazetas G, Tazoh T, Anastasopoulos I (2010) Seismic behavior of batter piles: elastic response. J Geotech Geoenviron Eng 136(9):1187–1199. doi:10.1061/(ASCE)GT.1943-5606.0000337

    Article  Google Scholar 

  • Harn RE (2004) Have batter piles gotten a bad rap in seismic zones (or everything you wanted to know about batter piles but were afraid to ask). In: Ports 2004: Port Development in the Changing World, pp 1–10. doi:10.1061/40727(2004)13

  • Harris CM, Piersol AG (2002) Harris’ shock and vibration handbook. McGraw-Hill, New York

    Google Scholar 

  • Haskell J, Madabhushi S, Cubrinovski M, Winkley A (2013) Lateral spreading-induced abutment rotation in the 2011 Christchurch earthquake: observations and analysis. Géotechnique 63(15):1310–1327. doi:10.1680/geot.12.P.174

    Article  Google Scholar 

  • Kim JB, Brungraber RJ, Singh LP (1979) Pile cap soil interaction from full-scale lateral load tests. J Geotech Eng Div 105(5):643–653

    Google Scholar 

  • Li Z, Escoffier S, Kotronis P (2013) Using centrifuge tests data to identify the dynamic soil properties: application to Fontainebleau sand. Soil Dyn Earthq Eng 52:77–87. doi:10.1016/j.soildyn.2013.05.004

    Article  Google Scholar 

  • Li Z, Kotronis P, Escoffier S (2014) Numerical study of the 3D failure envelope of a single pile in sand. Comput Geotech 62:11–26. doi:10.1016/j.compgeo.2014.06.004

    Article  Google Scholar 

  • Li Z, Kotronis P, Escoffier S, Tamagnini C (2015) A hypoplastic macroelement for single vertical piles in sand subject to three-dimensional loading conditions. Acta Geotech. doi:10.1007/s11440-015-0415-7

    Google Scholar 

  • Liu JL, Yuan ZL, Zhang KP (1985) Cap-pile-soil interaction of bored pile groups. In: Proceedings of the eleventh international conference on soil mechanics and foundation engineering, San Francisco, pp 1433–1436

  • Mokwa RL, Duncan JM (2003) Rotational restraint of pile caps during lateral loading. J Geotech Geoenviron Eng 129(9):829–837. doi:10.1061/(ASCE)1090-0241(2003)129:9(829)

    Article  Google Scholar 

  • Pender M (1993) Aseismic pile foundation design analysis. Bull N Z Soc Earthq Eng 26(1):49–160

    Google Scholar 

  • Teymur B, Madabhushi SPG (2003) Experimental study of boundary effects in dynamic centrifuge modelling. Géotechnique 53(7):655–663. doi:10.1680/geot.2003.53.7.655

    Article  Google Scholar 

  • Zafir Z, Vanderpool WE (1998) Lateral response of large diameter drilled shafts: I-15/US 95 load test program. In: Proceedings of the 33rd Engineering Geology and Geotechnical Engineering Symposium, University of Nevada, Reno, pp 161–176

  • Zeng X, Schofield AN (1996) Design and performance of an equivalent-shear-beam container for earthquake centrifuge modelling. Géotechnique 46(1):83–102. doi:10.1680/geot.1996.46.1.83

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of IFSTTAR (Institut français des sciences et technologies des transports, de l’aménagement et des réseaux) and of the Région Pays de la Loire is gratefully acknowledged. The authors would like also to thank the valuable support and help from the technical staff of the IFSTTAR centrifuge team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Escoffier, S. & Kotronis, P. Centrifuge modeling of batter pile foundations under sinusoidal dynamic excitation. Bull Earthquake Eng 14, 673–697 (2016). https://doi.org/10.1007/s10518-015-9859-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-015-9859-2

Keywords

Navigation