Abstract
This article examines the effectiveness of two innovative retrofitting solutions at enhancing the seismic behaviour of a substandard reinforced concrete building tested on a shake table as part of the Pan-European funded project BANDIT. To simulate typical substandard construction, the reinforcement of columns and beam-column joints of the full-scale structure had inadequate detailing. An initial series of shake table tests were carried out to assess the seismic behaviour of the bare building and the effectiveness of a first retrofitting intervention using Post-Tensioned Metal Straps. After these tests, columns and joints were repaired and subsequently retrofitted using a retrofitting solution consisting of Carbon Fibre Reinforced Polymers and Post-Tensioned Metal Straps applied on opposite frames of the building. The building was then subjected to unidirectional and three-dimensional incremental seismic excitations to assess the effectiveness of the two retrofitting solutions at improving the global and local building performance. The article provides details of the above shake table testing programme and retrofitting solutions, and discusses the test results in terms of the observed damage, global damage indexes, performance levels and local strains. It is shown that whilst the original bare building was significantly damaged at a peak ground acceleration (PGA) of 0.15 g, the retrofitted building resisted severe three-dimensional shake table tests up to PGA = 0.60 g without failure. Moreover, the retrofitting intervention enhanced the interstorey drift ratio capacity of the 1st and 2nd floors by 160 and 110 %, respectively. Therefore, the proposed dual retrofitting system is proven to be very effective for improving the seismic performance of substandard buildings.
Similar content being viewed by others
References
AFNOR (2007) Aciers pour beton arrne—Aciers soudables a verrous Partie1: Barres et couronnes. NF A 35-016-1, Association Française de Normalisation, Paris
Akguzel U, Pampanin S (2010) Effects of variation of axial load and bidirectional loading on seismic performance of GFRP retrofitted reinforced concrete exterior beam-column joints. J Compos Constr 14(1):94–104. doi:10.1061/(Asce)1090-0268(2010)14:1(94
Al-Salloum YA, Almusallam TH, Alsayed SH, Siddiqui NA (2011) Seismic behavior of as-built, ACI-complying, and CFRP-repaired exterior RC beam-column joints. J Compos Constr 15(4):522–534. doi:10.1061/(Asce)Cc.1943-5614.0000186
Antonopoulos CP, Triantafillou TC (2003) Experimental investigation of FRP-strengthened RC beam-column joints. J Compos Constr 7(1):39–49. doi:10.1061/(Asce)1090-0268(2003)7:1(39)
ASCE (2007) ASCE/SEI 41-06 Seismic rehabilitation of existing buildings. American Society of Civil Engineers, Reston
Biddah A, Ghobarah A, Aziz TS (1997) Upgrading of nonductile reinforced concrete frame connections. J Struct Eng 123(8):1001–1010
CEN (2004a) EN 1992-1-1:2004. Eurocode 2: Design of concrete structures, Part 1–1: general rules and rules for buildings. Comité Européen de Normalisation, Lausanne
CEN (2004b) EN 1998-1:2004 Eurocode 8: design of structures for earthquake resistance Part 1: General rules, seismic actions and rules for buildings. Comité Européen de Normalisation, Lausanne
CEN (2009a) EN 12390-5:2009 Testing hardened concrete part 5: flexural strength of test specimens. Comité Européen de Normalisation, Lausanne
CEN (2009b) EN 12390-6:2009 Testing hardened concrete part 6: tensile splitting strength of test specimens. Comité Européen de Normalisation, Lausanne
Clough RW, Penzien J (2003) Dynamics of structures. Computers and Structures Inc, Berkeley
Corazao M, Durrani AJ (1989) Repair and strengthening of beam-to-column connections subjected to earthquake loading. National Center for Earthquake Engineering Research, State University of New York at Buffalo
DiPasquale E, Ju JW, Askar A, Cakmak AS (1990) Relation between global damage indexes and local Stiffness degradation. J Struct Eng-Asce 116(5):1440–1456. doi:10.1061/(Asce)0733-9445(1990)116:5(1440)
Frangou M (1996) Strengthening of concrete by lateral confinement. Ph.D. thesis, Department of Civil and Structural Engineering, The University of Sheffield, UK
Frangou M, Pilakoutas K, Dritsos S (1995) Structural repair strengthening of RC columns. Cons Build Mater 9(5):259–266. doi:10.1016/0950-0618(95)00013-6
Garcia R, Hajirasouliha I, Pilakoutas K (2010) Seismic behaviour of deficient RC frames strengthened with CFRP composites. Eng Struct 32(10):3075–3085. doi:10.1016/j.engstruct.2010.05.026
Garcia R, Hajirasouliha I, Guadagnini M, Helal Y, Jemaa Y, Pilakoutas K, Mongabure P, Chrysostomou C, Kyriakides N, Ilki A, Budescu M, Taranu N, Ciupala MA, Torres L, Saiidi M (2014a) Full-scale shaking table tests on a substandard RC building repaired and strengthened with post-tensioned metal straps. J Earthq Eng 18(2):187–213. doi:10.1080/13632469.2013.847874
Garcia R, Helal Y, Pilakoutas K, Guadagnini M (2014b) Bond behaviour of substandard splices in RC beams externally confined with CFRP. Constr Build Mater 50:340–351. doi:10.1016/j.conbuildmat.2013.09.021
Garcia R, Jemaa Y, Helal Y, Guadagnini M, Pilakoutas K (2014c) Seismic strengthening of severely damaged beam-column RC joints using CFRP. J Compos Constr. doi:10.1061/(Asce)Cc.1943-5614.0000448
Garcia R, Helal Y, Pilakoutas K, Guadagnini M (2015) Bond strength of short lap splices in RC beams confined with steel stirrups or external CFRP. Mater Struct 48(1–2):277–293. doi:10.1617/s11527-013-0183-5
GB50011-2001 (2001) Code for seismic design of buildings. Architecture and Building Press, Ministry of Construction of China, Beijing
Gdoutos EE, Pilakoutas K, Rodopoulos CA (2000) Failure analysis of industrial composite materials. McGraw-Hill, New York
Ghobarah A, El-Amoury T (2005) Seismic rehabilitation of deficient exterior concrete frame joints. J Compos Constr 9(5):408–416. doi:10.1061/(Asce)1090-0268(2005)9:5(408)
Ghobarah A, Aziz TS, Biddah A (1996) Seismic rehabilitation of reinforced concrete beam-column connections. Earthq Spectra 12(4):761–780. doi:10.1193/1.1585909
Hajirasouliha I, Asadi P, Pilakoutas K (2012) An efficient performance-based seismic design method for reinforced concrete frames. Earthq Eng Struct D 41(4):663–679. doi:10.1002/Eqe.1150
Helal Y (2012) Seismic strengthening of deficient RC elements using PTMS. Ph.D. thesis, Department of Civil and Structural Engineering, The University of Sheffield, UK
Helal Y, Garcia R, Guadagnini M, Pilakoutas K, Hajirasouliha I (2014) Strengthening of short splices in RC beams using post-tensioned metal straps. Mater Struct. doi:10.1617/s11527-014-0481-6
Ilki A, Bedirhanoglu I, Kumbasar N (2011) Behavior of FRP-retrofitted joints built with plain bars and low-strength concrete. J Compos Constr 15(3):312–326. doi:10.1061/(ASCE)CC.1943-5614.0000156
Karayannis CG, Chalioris CE, Sirkelis GM (2008) Local retrofit of exterior RC beam-column joints using thin RC jackets: an experimental study. Earthq Eng Struct Dyn 37(5):727–746. doi:10.1002/Eqe.783
Kyriakides N, Ahmad S, Pilakoutas K, Neocleous K, Chrysostomou C (2014) A probabilistic analytical seismic vulnerability assessment framework for substandard structures in developing countries. Earthq Struct 6(6):665–687
Li JB, Gong JX, Wang LC (2009) Seismic behavior of corrosion-damaged reinforced concrete columns strengthened using combined carbon fiber-reinforced polymer and steel jacket. Cons Build Mater 23(7):2653–2663. doi:10.1016/j.conbuildmat.2009.01.003
Moghaddam H, Samadi M, Pilakoutas K, Mohebbi S (2010) Axial compressive behavior of concrete actively confined by metal strips; part A: experimental study. Mater Struct 43(10):1369–1381. doi:10.1617/s11527-010-9588-6
Mongabure P (2012) BANDIT project: seismic tests on a reinforced concrete frame with post-tensioned metal strips retrofitting, final report. FP7 SERIES Programme (seismic engineering research infrastructures for european synergies)
Pantelides CP, Gergely J (2008) Seismic retrofit of reinforced concrete beam column T-joints in bridge piers with FRP composite jackets. Paper presented at the SP-258: seismic strengthening of concrete buildings using FRP composites (in CD-ROM)
Parvin A, Altay S, Yalcin C, Kaya O (2010) CFRP rehabilitation of concrete frame joints with inadequate shear and anchorage details. J Compos Constr 14(1):72–82. doi:10.1061/(Asce)Cc.1943-5614.0000055
RILEM (1994) RILEM Recommendations for the testing and use of constructions materials—CPC 8 modulus of elasticity of concrete in compression 1975
Sasmal S, Ramanjaneyulu K, Novak B, Srinivas V, Kumar KS, Korkowski C, Roehm C, Lakshmanan N, Iyer NR (2011) Seismic retrofitting of nonductile beam-column sub-assemblage using FRP wrapping and steel plate jacketing. Cons Build Mater 25(1):175–182. doi:10.1016/j.conbuildmat.2010.06.041
Sezen H (2012) Repair and strengthening of reinforced concrete beam-column joints with fiber-reinforced polymer composites. J Compos Constr 16(5):499–506. doi:10.1061/(Asce)Cc.1943-5614.0000290
Thermou GE, Pantazopoulou SJ (2011) Assessment indices for the seismic vulnerability of existing RC buildings. Earthq Eng Struct D 40(3):293–313. doi:10.1002/Eqe.1028
Tsonos ADG (2010) Performance enhancement of R/C building columns and beam-column joints through shotcrete jacketing. Eng Struct 32(3):726–740. doi:10.1016/j.engstruct.2009.12.001
Zembaty Z, Kowalski M, Pospisil S (2006) Dynamic identification of a reinforced concrete frame in progressive states of damage. Eng Struct 28(5):668–681. doi:10.1016/j.engstruct.2005.09.025
Acknowledgments
The research leading to these results has received funding from the European Community’s Seventh Framework Program [FP7/2007–2013] for access to CEA (Commissariat à l’Energie Atomique) under Grant Agreement No. 227887.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (MPG 41486 kb)
Supplementary material 2 (MPG 51404 kb)
Rights and permissions
About this article
Cite this article
Garcia, R., Pilakoutas, K., Hajirasouliha, I. et al. Seismic retrofitting of RC buildings using CFRP and post-tensioned metal straps: shake table tests. Bull Earthquake Eng 15, 3321–3347 (2017). https://doi.org/10.1007/s10518-015-9800-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10518-015-9800-8