Skip to main content

Advertisement

Log in

Displacement versus pseudo-static evaluation of the seismic performance of sliding retaining walls

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Pseudo-static seismic analysis of retaining walls requires the selection of an equivalent seismic coefficient synthetically representing the effects of the transient seismic actions on the soil-wall system. In this paper, a rational criterion for the selection of the equivalent seismic coefficient is proposed with reference to sliding retaining walls. In the proposed approach earthquake-induced permanent displacements are assumed as a suitable parameter to assess the seismic performance and an alternative definition of the wall safety factor is introduced comparing expected and limit values of permanent displacements. Using a simplified displacement prediction model it is shown that, for a given design earthquake, reliable values of the equivalent seismic coefficient should depend on all the factors affecting the stability condition of the soil-wall system and on a threshold value of permanent displacement related to a given ultimate or serviceability limit state. To achieve a match between the results of the pseudo-static and of the displacement-based analysis, the proposed procedure detects the value of the equivalent seismic coefficient for which the two approaches provide the same factor of safety. Thus, without necessarily carrying out a displacement analysis, a measure of the safety condition of a soil-wall system consistent with the actual seismic performance may be achieved through an equivalent pseudo-static analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ambraseys NN, Menu JM (1988) Earthquake-induced ground displacement. Earthq Eng Struct Dyn 16(7):985–1006

    Article  Google Scholar 

  • Arias A (1970) A measure of earthquake intensity. In: Hansen R (ed) Seismic design for nuclear power plants. MIT Press, Cambridge, MA, pp 438–483

  • Ausilio E, Silvestri F, Troncone A, Tropeano G (2007) Seismic displacement analysis of homogeneous slopes: a review of existing simplified methods with reference to Italian seismicity. In: Proceedings of 4th international conference, ICEGE, Thessaloniki, Greece, paper no 1614

  • Biondi G, Cascone E (2014) Seismic displacements of sliding retaining walls (submitted for publication)

  • Biondi G, Cascone E, Rampello S (2011) Valutazione del comportamento dei pendii in condizioni sismiche. Rivista Italiana di Geotecnica XLV(1):9–32

    Google Scholar 

  • Caltabiano S, Cascone E, Maugeri M (1999) Sliding response of gravity retaining walls. In: Proceedings of 2nd international conference on earthquake geotechnical engineering, Lisbon, pp 285–290

  • Caltabiano S, Cascone E, Maugeri M (2000) Seismic stability of retaining walls with surcharge. Soil Dyn Earthq Eng 20(5–8):469–476

    Article  Google Scholar 

  • Caltabiano S, Cascone E, Maugeri M (2005) A procedure for seismic design of retaining wall. In: Maugeri M (ed) Chapter 14 in Seismic prevention of damage: a case study in a Mediterranean city. Wit Press, Ashurst, pp 263–277

  • Caltabiano S, Cascone E, Maugeri M (2012) Static and seismic limit equilibrium analysis of sliding retaining walls under different surcharge conditions. Soil Dyn Earthq Eng 37:38–55

    Article  Google Scholar 

  • Cascone E, Biondi G (2014) A rational criterion for the selection of pseudo-static coefficients for sliding retaining walls (submitted for publication)

  • Chlimintzas G (2002) Seismic displacements of slopes using multi-block sliding technique. PhD thesis, Imperial College of Science, Technology and Medicine, London

  • Coulomb CA (1776) Essai sur une application des règles de maximis et minimis a quelques problèmes de statique relatifs a l’architecture. Memoirs Academie Royal Pres. Division Sav. 7, Paris, France (in French)

  • European Committee for Standardization (2003) Eurocode 8: design of structures for earthquake resistance—part 5: foundations, retaining structures and geotechnical aspects. CEN, Brussels, Belgium

  • Evangelista A, Scotto di Santolo A (2010) Evaluation of pseudostatic active earth pressure coefficient of cantilever retaining walls. Soil Dyn Earthqu Eng 30:1119–1128

    Article  Google Scholar 

  • Fang YS, Yang YC, Chen TJ (2003) Retaining wall damaged in the Chi-Chi earthquake. Can Geotech J 40:1142–1153

    Article  Google Scholar 

  • Greco VR (2009) Seismic active thrust on cantilever walls with short heel. Soil Dyn Earthq Eng 29(2):249–252

    Article  Google Scholar 

  • Huang C-C, Chen Y-H (2004) Seismic stability of soil retaining walls situated on slope. J Geotech Geoenviron Eng ASCE 130(1): 45–57

    Google Scholar 

  • Hwang GS, Chen CH (2012) A study of the Newmark sliding block displacement functions. Bull Earthq Eng 11(2):481–502

    Google Scholar 

  • Inglès J, Darrozes J, Soula J-C (2006) Effects of vertical component of ground shaking on earthquake-induced landslides displacements using generalized Newmark’s analysis. Eng Geol 8:134–147

    Article  Google Scholar 

  • Jibson RW (2007) Regression models for estimating coseismic landslide displacement. Eng Geol 91(2–4):209–218

    Article  Google Scholar 

  • Kloukinas P, Mylonakis G (2011) Rankine solution for seismic earth pressures on L-shaped retaining walls. In: Proceedings of 5th international conference on earthquake geotechnical engineering. Santiago, Chile, paper no RSSKL

  • Koseki J, Tatsuoka F, Munaf Y, Tateyama M, Kojima K (1998) A modified procedure to evaluate active earth pressure at high seismic loads. Soils Found (special issue on Geotechnical Aspects of the January 17 1995 Hyogoken-Nanbu earthquake) 2:209–216

    Google Scholar 

  • Ling HI, Leshchinsky D (1998) Effects of vertical acceleration on seismic design of geosynthetic reinforced soil structures. Geotechnique 48(3):347–373

    Article  Google Scholar 

  • Ling HI, Leshchinsky D, Mohri Y (1997) Soil slopes under combined horizontal and vertical seismic accelerations. Earthq Eng Struct Dyn 26:1231–1241

    Article  Google Scholar 

  • Madiai C (2009) Correlazioni tra parametri del moto sismico e spostamenti attesi del blocco di Newmark. Rivista Italiana di Geotecnica 1/09:23–43

    Google Scholar 

  • Mononobe N, Matsuo H (1929). On the determination of earth pressure during earthquakes. In: Proceedings of world engineering conference, vol IX, paper no 388

  • Motta E (1993) Sulla valutazione della spinta attiva in terrapieni di altezza finita. Rivista Italiana di Geotecnica XXVII(3):235–245

    Google Scholar 

  • Motta E (1994) Generalized Coulomb active-earth pressure for distanced surcharge. J Geotech Eng ASCE 120(6):1072–1079

    Article  Google Scholar 

  • Mylonakis G, Kloukinas P, Papantonopoulos C (2007) An alternative to the Mononobe–Okabe equations for seismic earth pressures. Soil Dyn Earthq Eng 27:957–969

    Article  Google Scholar 

  • Nadim F, Whitman RV (1983) Seismically induced movement of retaining walls. J Geotech Eng ASCE 109(7):915–931

    Article  Google Scholar 

  • Newmark NM (1965) Effect of earthquakes on dams and embankments. Geotechnique 15:139–159

    Article  Google Scholar 

  • Okabe S (1926) General theory of Earth pressure. J Jpn Soc Civ Eng 12(1):1277–1323

    Google Scholar 

  • Rathje EM, Abrahamson NA, Bray JD (1998) Simplified frequency content estimates of earthquakes ground motions. J Geotech Geoenviron Eng ASCE 124(2):150–159

    Article  Google Scholar 

  • Richards R, Elms D (1979) Seismic behaviour of gravity retaining walls. J Geotech Eng ASCE 105(4):449–464

    Google Scholar 

  • Sarma SK, Chlimintzas G (2000) Second edited report for the project ENV4-CT97-0392. European Commission DGXII for Science Research and Development

  • Sarma SK, Scorer MR (2009) The effect of vertical accelerations on seismic slope stability. In: Kokusho T, Tsukamoto Y, Yoshimine M (eds) Proceedings of the international conference on performance-based design in earthquake geotechnical engineering. Taylor and Francis Group, London, pp 889–896

  • Saygili G, Rathje EM (2008) Empirical predictive models for earthquake-induced sliding displacements of slopes. J Geotech Geoenviron Eng ASCE 134(6):790–803

    Article  Google Scholar 

  • Shukla SK, Gupta SK, Sivakugan N (2009) Active earth pressure on retaining wall for c - \(\Phi \) soil backfill under seismic loading condition. J Geotech Geoenviron Eng ASCE 135(5):690–696

    Article  Google Scholar 

  • Stamatopoulos CA, Velgaki EG (2001) Critical acceleration and seismic displacement of vertical gravity walls by a two body model. In: Proceedings of 4th international conference on recent advances in geotechnical earthquake engineering and soil dynamics. San Diego, CA, paper no 7.22, 26–31 March 2001

  • Stamatopoulos CA, Velgaki EG, Modaressi A, Lopez-Caballero F (2006) Seismic displacement of gravity walls by a two body model. Bull Earthq Eng 4:295–318

    Article  Google Scholar 

  • Tateyama M, Tatsuoka F, Koseki J, Horii K (1995) Damage to soil retaining walls for railway embankments during the Great Hanshin-Awaji earthquake. In: Proceedings of 1st ICEGE, Tokyo

  • Taylor M, Kontoe S, Sarma S (2007) A review of performance based design procedures for gravity retaining structures under seismic loading. In: Proceedings 4th international conference on earthquake geotechnical engineering, 4ICEGE, Thessaloniki, paper 1520

  • Trandafir AC, Kamai T, Sidle RC (2009) Earthquake induced displacements of gravity walls and anchor-reinforced walls. Soil Dyn Earthq Eng 29:428–437

    Article  Google Scholar 

  • Trifunac MD, Brady AG (1975) A study of the duration of strong earthquake ground motion. Bull Seismol Soc Am 65:581–626

    Google Scholar 

  • Whitman RV, Liao S (1984) Seismic design of gravity retaining walls. In: Proceedings of 8th world conference on earthquake engineering, San Francisco, vol III, pp 533–540

  • Wu Y, Prakash S (2001) Seismic displacement of rigid retaining walls—state of the art. In: Proceedings of 4th international conference on recent Advances in Geotechnical Earthquake Engineering and Soil dynamics. San Diego, CA, paper no 7.05

  • Yan L, Matasovic N, Kavazanjian E Jr (1996) Seismic response of rigid block on inclined plane to vertical and horizontal ground motions acting simultaneously. In: Proceedings of 11th ASCE engineering mechanics conference. Fort Lauderdale, Florida, USA, vol 2, pp 1110–1114

  • Yegian MK, Marciano EA, Gharaman VG (1991) Earthquake-induced permanent displacement deformations: probabilistic approach. J Geotech Eng ASCE 117(1):35–50

    Article  Google Scholar 

  • Zarrabi-Kashani K (1979) Sliding of gravity retaining walls during earthquake considering vertical acceleration and changing inclination of failure surface. MS thesis, Department of Civil Engineering, MIT, Cambridge, USA

  • Zeng X, Steedman RS (2000) Rotating block method for seismic displacement of gravity walls. J Geotech Geoenviron Eng ASCE 126(8):709–717

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Dipartimento della Protezione Civile in the framework of the Research Project ReLUIS/DPC 2010-2013 (Thematic area AT-2, Task 2.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Biondi.

Appendices

Appendix

For the soil-wall systems shown in Figs. 1a, 2 this Appendix lists the equations derived by Biondi and Cascone (2014) and by Cascone and Biondi (2014) for the evaluation of the critical,\( k_\mathrm{h,c}\), and of the equivalent, \(k_\mathrm{h,eq}\), seismic coefficients and of the displacement factor \(C_\mathrm{w}\) assuming \(k_\mathrm{v}\) \(=\) 0 (\(\Omega \) \(=\) 0).

Appendix 1: Horizontal component of the critical acceleration coefficient, \(k_\mathrm{h,c}\): R–E procedure

\(k_\mathrm{h,c}\) can be computed solving, iteratively, the following equation (Biondi and Cascone 2014):

$$\begin{aligned} k_{\mathrm{h,c}} =\frac{\frac{2\cdot c_\mathrm{b} \cdot B_\mathrm{b} }{\gamma \cdot H^{2}\cdot \Gamma _\mathrm{w} \cdot \cos \upalpha _\mathrm{b} }+E_\mathrm{c} }{\frac{\cos \left( {\upphi _\mathrm{b} -\upalpha _\mathrm{b} } \right) }{\cos \upphi _\mathrm{b} }+\Omega \cdot E_\mathrm{c} } \end{aligned}$$
(31)

where \(c_\mathrm{b}\) and \(\upphi _\mathrm{b}\) are the shear strength parameters at the wall-foundation soil interface, \(B_\mathrm{b}\) is the wall base width, \(\upalpha _\mathrm{b}\) is the inclination of the wall base to the horizontal and \(H\) is the height of the retained soil having a unit weight \(\upgamma \);

$$\begin{aligned} E_\mathrm{c}&= \frac{\sin \left( {\upphi _\mathrm{b} -\upalpha _\mathrm{b} } \right) }{\cos \upphi _\mathrm{b} }+\frac{K_{\mathrm{ae,c}} }{\Gamma _\mathrm{w} }\cdot \frac{\sin \left( {\updelta +\upbeta +\upphi _\mathrm{b} -\upalpha _\mathrm{b} } \right) }{\cos \upphi _\mathrm{b} }\end{aligned}$$
(32)
$$\begin{aligned} \Omega&= \frac{k_{\mathrm{v,c}} }{k_{\mathrm{h,c}} } \end{aligned}$$
(33)

is the ratio of the vertical to the horizontal seismic coefficient at limit equilibrium;

$$\begin{aligned} \Gamma _\mathrm{w} =\frac{2\cdot W_\mathrm{w} }{\upgamma \cdot H^{2}} \end{aligned}$$
(34)

is the normalized wall weight (\(W_\mathrm{w}\) is the wall weight);

\(K_\mathrm{ae,c}\) is the value at limit equilibrium of the Mononobe–Okabe active earth-pressure coefficient \(K_\mathrm{ae}\):

$$\begin{aligned} K_{\mathrm{ae}} =\frac{\cos ^{2}(\upbeta +\uptheta -\upvarphi ^{\prime })}{\cos ^{2}\upbeta \cdot \cos \uptheta \cdot \cos (\updelta +\upbeta +\uptheta )\cdot \left[ {1+\sqrt{\frac{\sin (\upvarphi ^{\prime }-i-\uptheta )\cdot \sin (\updelta +\upvarphi ^{\prime })}{\cos (i-\upbeta )\cdot \cos (\upbeta +\updelta +\uptheta )}}} \right] ^{2}} \end{aligned}$$
(35)

with:

$$\begin{aligned} \tan \uptheta =\tan \mathop {\uptheta }\nolimits _\mathrm{c} =\frac{k_{\mathrm{h,c}} }{1-k_{\mathrm{v,c}} }=\frac{1}{1/{k_{\mathrm{h,c}} }-\Omega _\mathrm{c} } \end{aligned}$$
(36)

In the case of horizontal wall base (\(\upalpha _\mathrm{b}\) \(=\) 0; Fig. 1a) Eqs. 31 and 32 reduce to:

$$\begin{aligned} k_{\mathrm{h,c}}&= \frac{\frac{2\cdot c_\mathrm{b} \cdot B_\mathrm{b} }{\upgamma \cdot H^{2}\cdot \Gamma _\mathrm{w} }+E_\mathrm{c} }{1+\Omega \cdot E_\mathrm{c} }\end{aligned}$$
(37)
$$\begin{aligned} E_\mathrm{c}&= \tan \upphi _\mathrm{b} +\frac{K_{\mathrm{ae,c}} }{\Gamma _\mathrm{w} }\cdot \frac{\sin \left( {\updelta +\upbeta +\upphi _\mathrm{b} } \right) }{\cos \upphi _\mathrm{b}} \end{aligned}$$
(38)

If the vertical component of the ground acceleration is neglected (\(k_\mathrm{v}\) \(=\) 0; \(\Omega \) \(=\) 0), it is:

$$\begin{aligned} k_{\mathrm{h,c}} =\frac{2\cdot c_\mathrm{b} \cdot B_\mathrm{b} }{\upgamma \cdot H^{2}\cdot \Gamma _\mathrm{w} }+\tan \upphi _\mathrm{b} +\frac{K_{\mathrm{ae,c}} }{\Gamma _\mathrm{w} }\cdot \frac{\sin \left( {\updelta +\upbeta +\upphi _\mathrm{b} } \right) }{\cos \upphi _\mathrm{b}} \end{aligned}$$
(39)

Appendix 2: Horizontal component of the critical acceleration coefficient: 2-\(W\) procedure

For the case \(c_\mathrm{b}\) \(=\) 0 and \(\upalpha _\mathrm{b}\) \(=\) 0, the horizontal component of the critical acceleration coefficient \(k_\mathrm{h,c}\) can be computed through the following equation (Biondi and Cascone 2014):

$$\begin{aligned} \frac{k_{\mathrm{h,c}} }{1-\Omega \cdot k_{\mathrm{h,c}} }=\frac{b+\sqrt{b^{2}-a\cdot c}}{a} \end{aligned}$$
(40)

where:

$$\begin{aligned} a=B_4^2 -4\cdot A_4 \cdot C_4 \quad b=2\cdot A_3 \cdot C_4 -2\cdot C_3 \cdot A_4 -B_3 \cdot B_4 \quad c=B_3^2 +4\cdot A_3 \cdot C_3\nonumber \\ \end{aligned}$$
(41)

being:

$$\begin{aligned} A_3&= \frac{\hbox {cos}\left( \upbeta +\updelta +\upphi _\mathrm{b} \right) }{\cos \upphi _\mathrm{b}}\cdot \left( {1+\tan i\cdot \tan \upbeta } \right) \cdot \tan \upbeta \nonumber \\&\quad -\frac{\sin \left( {\upbeta +\updelta +\upvarphi ^{\prime }} \right) }{\cos \upvarphi ^{\prime }}\cdot \tan {\upphi }_\mathrm{b} \cdot \Gamma _\mathrm{w}\end{aligned}$$
(42)
$$\begin{aligned} A_4&= \frac{\cos \left( {\upbeta +\updelta +\upphi _\mathrm{b} } \right) }{\cos \upphi _\mathrm{b} }\cdot \left( {1+\tan i\cdot \tan \upbeta } \right) \cdot \tan \upbeta \cdot \tan {\upvarphi }^{\prime }\nonumber \\&\quad +\frac{\sin \left( {\upbeta +\updelta +\upvarphi ^{\prime }} \right) }{\cos \upvarphi ^{\prime }}\cdot \Gamma _\mathrm{w}\end{aligned}$$
(43)
$$\begin{aligned} B_3&= \frac{\cos \left( {\upbeta +\updelta +\upphi _\mathrm{b} } \right) }{\cos \upphi _\mathrm{b} }\cdot \left( {1+\tan i\cdot \tan \upbeta } \right) \cdot \left( {1-\tan \upbeta \cdot \tan {\upvarphi }^{\prime }} \right) \nonumber \\&\quad -\frac{\cos \left( {\upbeta +\updelta +\upvarphi ^{\prime }+i} \right) }{\cos \upvarphi ^{\prime }\cdot \cos i}\cdot \Gamma _\mathrm{w} \cdot \tan {\upphi }_\mathrm{b}\end{aligned}$$
(44)
$$\begin{aligned} B_4&= \frac{\cos \left( {\upbeta +\updelta +\upphi _\mathrm{b} } \right) }{\cos \upphi _\mathrm{b} }\cdot \left( {1+\tan i\cdot \tan \upbeta } \right) \cdot \left( \tan \upbeta +\tan {\upvarphi }^{\prime } \right) \nonumber \\&\quad +\frac{\cos \left( {\upbeta +\updelta +\upvarphi ^{\prime }+i} \right) }{\cos \upvarphi ^{\prime }\cdot \cos i}\cdot \Gamma _\mathrm{w}\end{aligned}$$
(45)
$$\begin{aligned} C_3&= \frac{\cos \left( {\upbeta +\updelta +\upphi _\mathrm{b}} \right) }{\cos \upphi _\mathrm{b} }\cdot \left( {1+\tan i\cdot \tan \upbeta } \right) \cdot \tan {\upvarphi }^{\prime }\nonumber \\&\quad -\frac{\cos \left( {\upbeta +\updelta +\upvarphi ^{\prime }} \right) }{\cos \upvarphi ^{\prime }}\cdot \Gamma _\mathrm{w} \cdot \tan i\cdot \tan {\upphi } _\mathrm{b}\end{aligned}$$
(46)
$$\begin{aligned} C_4&= \frac{\cos \left( {\upbeta +\updelta +\upphi _\mathrm{b} } \right) }{\cos \upphi _\mathrm{b} }\cdot \left( {1+\tan i\cdot \tan \upbeta } \right) \nonumber \\&\quad -\frac{\cos \left( {\upbeta +\updelta +\upvarphi ^{\prime }} \right) }{\cos \upvarphi ^{\prime }}\cdot \tan i\cdot \Gamma _\mathrm{w} \end{aligned}$$
(47)

Appendix 3: Wall displacement factor \(C_\mathrm{w}\)

For the case \(c_\mathrm{b}\) \(=\) 0 the wall displacement factor \(C_\mathrm{w}\) is (Biondi and Cascone 2014):

$$\begin{aligned} C_\mathrm{w} =\frac{\Gamma _\mathrm{w} \cdot A_5 +B_5 }{\Gamma _\mathrm{w} \cdot A_6 +B_6 } \end{aligned}$$
(48)

where:

$$\begin{aligned} A_5&= \cos \left( {\upalpha _\mathrm{c} -\updelta -\upbeta -\upvarphi _{}^{\prime }} \right) \cdot \cos \left( {\upalpha _\mathrm{c} -\upbeta } \right) \cdot \cos \left( {\upphi _\mathrm{b} -\upalpha _\mathrm{b} } \right) \end{aligned}$$
(49)
$$\begin{aligned} \hbox {A}_\mathrm{6}&= \cos \left( {\upalpha _\mathrm{c} -\updelta -\upbeta -\upvarphi _{}^{\prime }} \right) \cdot \cos \left( {\upalpha _\mathrm{c} -\upbeta } \right) \cdot \cos \upphi _\mathrm{b}\end{aligned}$$
(50)
$$\begin{aligned} B_5&= \frac{\cos \left( {\upbeta -i} \right) \cdot \cos \left( {\upalpha _\mathrm{c} -\upvarphi ^{\prime }} \right) \cdot \cos \left( {\upphi _\mathrm{b} -\upalpha _\mathrm{b} +\updelta +\upbeta } \right) }{\cos \left( {\upalpha _\mathrm{c} -i} \right) }\cdot \left[ {\frac{\cos \left( {\upalpha _\mathrm{c} -\upbeta } \right) }{\cos \upbeta }} \right] ^{2}\end{aligned}$$
(51)
$$\begin{aligned} B_6&= \frac{\cos \upvarphi ^{\prime }\cdot \cos \left( {\upphi _\mathrm{b} -\upalpha _\mathrm{w} +\upbeta +\updelta } \right) \cdot \cos \left( {\upbeta -\upalpha _\mathrm{w} } \right) \cdot \left( {\cot \upalpha _\mathrm{c} +\tan \upbeta } \right) \cdot \left( {1+\tan i\cdot \tan \upbeta } \right) }{1-\tan i\cdot \cot \upalpha _\mathrm{c} }\nonumber \\ \end{aligned}$$
(52)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biondi, G., Cascone, E. & Maugeri, M. Displacement versus pseudo-static evaluation of the seismic performance of sliding retaining walls. Bull Earthquake Eng 12, 1239–1267 (2014). https://doi.org/10.1007/s10518-013-9542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-013-9542-4

Keywords

Navigation