Bulletin of Earthquake Engineering

, Volume 12, Issue 1, pp 341–358 | Cite as

Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East

  • John Douglas
  • Sinan Akkar
  • Gabriele Ameri
  • Pierre-Yves Bard
  • Dino Bindi
  • Julian J. Bommer
  • Sanjay Singh Bora
  • Fabrice Cotton
  • Boumédiène Derras
  • Marcel Hermkes
  • Nicolas Martin Kuehn
  • Lucia Luzi
  • Marco Massa
  • Francesca Pacor
  • Carsten Riggelsen
  • M. Abdullah Sandıkkaya
  • Frank Scherbaum
  • Peter J. Stafford
  • Paola Traversa
Original Research Paper

Abstract

This article presents comparisons among the five ground-motion models described in other articles within this special issue, in terms of data selection criteria, characteristics of the models and predicted peak ground and response spectral accelerations. Comparisons are also made with predictions from the Next Generation Attenuation (NGA) models to which the models presented here have similarities (e.g. a common master database has been used) but also differences (e.g. some models in this issue are nonparametric). As a result of the differing data selection criteria and derivation techniques the predicted median ground motions show considerable differences (up to a factor of two for certain scenarios), particularly for magnitudes and distances close to or beyond the range of the available observations. The predicted influence of style-of-faulting shows much variation among models whereas site amplification factors are more similar, with peak amplification at around 1s. These differences are greater than those among predictions from the NGA models. The models for aleatory variability (sigma), however, are similar and suggest that ground-motion variability from this region is slightly higher than that predicted by the NGA models, based primarily on data from California and Taiwan.

Keywords

Strong-motion data Ground-motion models Ground-motion prediction equations Style of faulting Site amplification Aleatory variability Epistemic uncertainty  Europe Middle East 

References

  1. Abrahamson NA, Youngs RR (1992) A stable algorithm for regression analyses using the random effects model. Bull Seismol Soc Am 82(1):505–510Google Scholar
  2. Abrahamson N, Atkinson G, Boore D, Bozorgnia Y, Campbell K, Chiou B, Idriss IM, Silva W, Youngs R (2008) Comparisons of the NGA ground-motion relations. Earthq Spect 24(1):45–66. doi:10.1193/1.2924363 CrossRefGoogle Scholar
  3. Akkar S, Sandıkkaya MA, Bommer JJ (2013a) Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng doi:10.1007/s10518-013-9461-4
  4. Akkar S, Sandıkkaya MA, Bommer JJ (2013b) Erratum: Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng. doi:10.1007/s10518-013-9508-6
  5. Akkar S, Sandıkkaya MA, Şenyurt M, Azari AS, Ay BÖ, Traversa P, Douglas J, Cotton F, Luzi L, Hernandez B, Godey S (2013c) Reference database for seismic ground-motion in Europe (RESORCE). Bull Earthq Eng. doi:10.1007/s10518-013-9506-8
  6. Ambraseys NN, Douglas J, Sarma SK, Smit PM (2005) Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: Horizontal peak ground acceleration and spectral acceleration. Bull Earthq Eng 3(1):1–53. doi:10.1007/s10518-005-0183-0 CrossRefGoogle Scholar
  7. Bindi D, Massa M, Luzi L, Ameri G, Pacor F, Puglia R, Augliera P (2013) Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-Damped PSA at spectral periods up to 3.0 s using the RESORCE dataset. Bull Earthq Eng (submitted to this issue)Google Scholar
  8. Bindi D, Parolai S, Grosser H, Milkereit C, Durukal E (2007) Empirical ground-motion prediction equations for northwestern Turkey using the aftershocks of the 1999 Kocaeli earthquake. Geophy Res Lett 34(L08305)Google Scholar
  9. Bommer JJ, Douglas J, Strasser FO (2003) Style-of-faulting in ground-motion prediction equations. Bull Earthq Eng 1(2):171–203CrossRefGoogle Scholar
  10. Bommer JJ, Scherbaum F, Bungum H, Cotton F, Sabetta F, Abrahamson NA (2005) On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bull Seismol Soc Am 95(2):377–389. doi:10.1785/0120040073 CrossRefGoogle Scholar
  11. Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01s and 10.0s. Earthq Spect 24(1):99–138CrossRefGoogle Scholar
  12. Bora SS, Scherbaum F, Kuehn N, Stafford PJ (2013) Fourier spectral- and duration models for the generation of response spectra adjustable to different source-, propagation-, and site conditions. Bull Earthq Eng. doi:10.1007/s10518-013-9482-z
  13. Building Seismic Safety Council (2009) 2009 NEHRP recommended seismic provisions For new buildings and other structures: part 1, provisions, Federal Emergency Management Agency (P-750), WashingtonGoogle Scholar
  14. Castellaro S, Mulargia F, Rossi PL (2008) \(\text{ V }_{S30}\): Proxy for seismic amplification? Seismol Res Lett 79(4):540–543. doi: 10.1785/gssrl.79.4.540 CrossRefGoogle Scholar
  15. Chiou B, Darragh R, Gregor N, Silva W (2008) NGA project strong-motion database. Earthq Spect 24(1):23–44. doi:10.1193/1.2894831 CrossRefGoogle Scholar
  16. Derras B, Cotton F, Bard P-Y (2013) Towards fully data driven ground-motion prediction models for Europe. Bull Earthq Eng. doi:10.1007/s10518-013-9481-0
  17. Douglas J (2010) Consistency of ground-motion predictions from the past four decades. Bull Earthq Eng 8(6):1515–1526. doi:10.1007/s10518-010-9195-5 CrossRefGoogle Scholar
  18. Douglas J, Halldórsson B (2010), On the use of aftershocks when deriving ground-motion prediction equations, 9th US National and 10th Canadian conference on earthquake engineering: reaching Beyond Borders, paper ID 220.Google Scholar
  19. Douglas J, Jousset P (2011) Modeling the difference in ground-motion magnitude-scaling in small and large earthquakes. Seismol Res Lett 82(4):504–508. doi:10.1785/gssrl.82.4.504 CrossRefGoogle Scholar
  20. Hermkes M, Kuehn NM, Riggelsen C (2013) Simultaneous quantification of epistemic and aleatory uncertainty in GMPEs using Gaussian process regression. Bull Earthq Eng (this issue)Google Scholar
  21. Petersen MD, Frankel AD, Harmsen SC, Mueller CS, Haller KM, Wheeler RL, Wesson RL, Zeng Y, Boyd OS, Perkins DM, Luco N, Field EH, Wills CJ, Rukstales KS (2008) Documentation for the 2008 Update of the United States National Seismic Hazard Maps, Open-File Report 2008–1128, U.S. Department of the Interior, U.S. Geological Survey, 61 pp.Google Scholar
  22. Power M, Chiou B, Abrahamson B, Bozorgnia Y, Shantz T, Roblee C (2008) An overview of the NGA project. Earthq Spect 24(1):3–21. doi:10.1193/1.2894833 CrossRefGoogle Scholar
  23. Sabetta F, Pugliese A (1987) Attenuation of peak horizontal acceleration and velocity from Italian strong-motion records. Bull Seismol Soc Am 77(5):1491–1513Google Scholar
  24. Scasserra G, Stewart JP, Bazzurro P, Lanzo G, Mollaioli F (2009) A comparison of NGA ground-motion prediction equations to Italian data. Bull Seismol Soc Am 99(5):2961–2978CrossRefGoogle Scholar
  25. Schmedes J, Archuleta RJ (2008) Near-source ground motion along strike-slip faults: Insights into magnitude saturation of PGV and PGA. Bull Seismol Soc Am 98(5):2278–2290. doi:10.1785/0120070209 CrossRefGoogle Scholar
  26. Stafford PJ, Strasser FO, Bommer JJ (2008) An evaluation of the applicability of the NGA models to ground-motion prediction in the Euro-Mediterranean region. Bull Earthq Eng 6(2):149–177CrossRefGoogle Scholar
  27. Stewart JP, Douglas J, Javanbarg MB, Di Alessandro C, Bozorgnia Y, Abrahamson NA, Boore DM, Campbell KW, Delavaud E, Erdik M, Stafford PJ (2012) Selection of a global set of ground motion prediction equations: Work undertaken as part of Task 3 of the GEM-PEER Global GMPEs project, PEER Report 2012/xx, Pacific Earthquake Engineering Research Center.Google Scholar
  28. Strasser F, Abrahamson NA, Bommer JJ (2009) Sigma: issues, insights, and challenges. Seismol Res Lett 80(1):40–56CrossRefGoogle Scholar
  29. USNRC (2012) Practical Implementation Guidelines for SSHAC Level 3 and 4 Hazard Studies. NUREG-2117, US Nuclear Regulatory Commission, WashingtonGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • John Douglas
    • 1
  • Sinan Akkar
    • 2
  • Gabriele Ameri
    • 3
  • Pierre-Yves Bard
    • 4
  • Dino Bindi
    • 6
  • Julian J. Bommer
    • 7
  • Sanjay Singh Bora
    • 8
  • Fabrice Cotton
    • 4
  • Boumédiène Derras
    • 4
    • 5
  • Marcel Hermkes
    • 8
  • Nicolas Martin Kuehn
    • 8
  • Lucia Luzi
    • 9
  • Marco Massa
    • 9
  • Francesca Pacor
    • 9
  • Carsten Riggelsen
    • 8
  • M. Abdullah Sandıkkaya
    • 2
    • 4
  • Frank Scherbaum
    • 8
  • Peter J. Stafford
    • 7
  • Paola Traversa
    • 10
  1. 1.DRP/RSVBRGMOrléansFrance
  2. 2.Middle East Technical UniversityAnkaraTurkey
  3. 3.FUGRO-GeoterAuriolFrance
  4. 4.ISTerre, Université Joseph Fourier, CNRSGrenobleFrance
  5. 5.RISk Assessment and Management laboratory (RISAM)Université Abou Bekr BelkaïdTlemcenAlgerie
  6. 6.GFZ-German Research Center for GeosciencesPotsdamGermany
  7. 7.Imperial College LondonLondonUK
  8. 8.Inst. Erd- und UmweltwissesnschaftenUniversitaet PotsdamPotsdamGermany
  9. 9.INGVMilanItaly
  10. 10.EDFAix en ProvenceFrance

Personalised recommendations