Skip to main content
Log in

Site effects “on the rock”: the case of Castelvecchio Subequo (L’Aquila, central Italy)

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

The April 6, 2009 L’Aquila earthquake was responsible for an “anomalous”, relatively high degree of damage (i.e. Is 7 MCS scale) at Castelvecchio Subequo (CS). Indeed, the village is located at source-to-site distance of about 40 km, and it is surrounded by other inhabited centres to which considerably lower intensities, i.e. Is 5–6, have been attributed. Moreover, the damage was irregularly distributed within CS, being mainly concentrated in the uppermost portion of the old village. Geophysical investigations (ambient seismic noise and weak ground motions analyses) revealed that site effects occurred at CS. Amplifications of the ground motion, mainly striking NE–SW, have been detected at the uppermost portion of the carbonate ridge on which the village is built. Geological/structural and geomechanical field surveys defined that the CS ridge is affected by sets of fractures, joints and shear planes—mainly roughly NW–SE and N–S trending—that are related to the deformation zone of the Subequana valley fault system and to transfer faults linking northward the mentioned tectonic feature with the Middle Aterno Valley fault system. In particular, our investigations highlight that seismic amplifications occur where joints set NW–SE trending are open. On the other hand, no amplification is seen in portions of the ridge where the bedrock is densely fractured but no open joints occur. The fracture opening seems related to the toppling tendency of the bedrock slabs, owing to the local geomorphic setting. These investigations suggest that the detected amplification of the ground motion is probably related to the polarization of the seismic waves along the Castelvecchio Subequo ridge, with the consequent oscillation of the rock slabs perpendicularly to the fractures azimuth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anzidei M, Boschi E, Cannelli V, Devoti R, Esposito A, Galvani A, Melini D, Pietrantonio G, Riguzzi F, Sepe V, Serpelloni E (2009) Coseismic deformation of the destructive April 6, 2009 L’Aquila earthquake (central Italy) from GPS data. Geophys Res Lett 36: L17307. doi:10.1029/2009GL039145

    Article  Google Scholar 

  • Athanasopoulos GA, Pelekis PC, Leonidou EA (1999) Effects of surface topography on seismic ground response in Egion (Greece) 15 June 1995 earthquake. Soil Dyn Earthq Eng 18: 135–149

    Article  Google Scholar 

  • Atzori S, Hunstad I, Chini M, Salvi S, Tolomei C, Bignami C, Stramondo S, Trasatti E, Antonioli A, Boschi E (2009) Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (central Italy). Geophys Res Lett 36: L15305

    Article  Google Scholar 

  • Bagh S, Chiaraluce L, De Gori P, Moretti M, Govoni A, Chiarabba C, Di Bartolomeo P, Romanelli M (2007) Background seismicity in the Central Apennines of Italy: the Abruzzo region case study. Tectonophysics 444: 80–92

    Article  Google Scholar 

  • Bard PY (1982) Diffracted waves and displacement fields over twodimensional elevated topographies. Geophys J Int 71: 731–760

    Article  Google Scholar 

  • Bard PY, Tucker BE (1985) Underground and ridge site effects: comparison of observation and theory. Bull Seismol Soc Am 75: 905–922

    Google Scholar 

  • Bindi D, Castro R, Franceschina G, Luzi L, Pacor F (2004) The 1997–1998 Umbria-Marche sequence (central Italy): source, path and site effects estimated from strong motion data recorded in the epicentral area. J Geophys Res 109: B04312. doi:10.1029/2003JB002857

    Article  Google Scholar 

  • Bindi D, Pacor F, Luzi L, Massa M, Ameri G (2009) The Mw 6.3, 2009 L’Aquila earthquake: source, path and site effects from spectral analysis of strong motion data. Geophys J Int 179: 1573–1579

    Article  Google Scholar 

  • Boncio P, Lavecchia G, Pace B (2004) Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: the case of central Apennines (Italy). J Seismol 8: 407–425

    Article  Google Scholar 

  • Boncio P, Pizzi A, Brozzetti F, Pomposo G, Lavecchia G, Di Naccio D, Ferrarini F (2010) Coseismic ground deformation of the 6 April 2009 L’Aquila earthquake (central Italy, Mw6.3). Geophys Res Lett 37: L06308

    Article  Google Scholar 

  • Boore DM (1972) A note on the effect of simple topography on seismic SH waves. Bull Seismol Soc Am 62: 275–284

    Google Scholar 

  • Boore DM (1983) Stochastic simulation of high-frequency ground motion based on seismological models of the radiated spectra. Bull Seism Soc Am 73: 1865–1894

    Google Scholar 

  • Boore DM (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160: 635–676

    Article  Google Scholar 

  • Borcherdt RD (1970) Effects of local geology on ground motion near San Francisco Bay. Bull Seismol Soc Am 60: 29–61

    Google Scholar 

  • Bosi C, Bertini T (1970) La geologia della media valle dell’Aterno. Mem Soc Geol It 9: 719–777

    Google Scholar 

  • Bouchon M, Barker JS (1996) Seismic response of a hill: the example of Tarzana. Calif Bull Seismol Soc Am 86: 66–72

    Google Scholar 

  • Calamita F, Pizzi A, Scisciani V, De Girolamo C, Coltorti M, Pieruccini P, Turco E (2000) Caratterizzazione delle faglie quaternarie nella dorsale appenninica umbro-marchigiana-abruzzese. CNR-Gruppo Nazionale per la Difesa dai Terremoti, Roma

    Google Scholar 

  • Cavinato GP, De Celles PG (1999) Extensional basins in the tectonically bimodal central Apennines fold-thrust belt, Italy: response to corner flow above a subducting slab in retrograde motion. Geology 27: 955–958

    Article  Google Scholar 

  • Çelebi M (1987) Topographical and geological amplifications determined from strong motion and aftershock records of the 3 March 1985 Chile earthquake. Bull Seismol Soc Am 77: 1147–1167

    Google Scholar 

  • Chávez-García F, Sánchez LR, Hatzfeld D (1996) Topographic site effects and HVSR. A comparison between observation and theory. Bull Seismol Soc Am 86: 1559–1573

    Google Scholar 

  • Devoti R, Riguzzi F, Cuffaro M, Doglioni C (2008) New GPS constraints on the kinematics of the Apennines subduction. Earth Planet Sci Lett 273: 163–174

    Article  Google Scholar 

  • Emergeo Working Group: (2010) Evidence for surface rupture associated with the Mw 6.3 L’Aquila earthquake sequence of April 2009 (central Italy). Terra Nova 22: 43–51

    Article  Google Scholar 

  • Faccioli E, Vanini M, Frassine L (2002) “Complex” site effects in earthquake ground motion, including topography. In: 12th European conference on earthquake engineering, Barbican Center, London, UK

  • Falcucci E, Gori S, Moro M, Galadini F, Marzorati S, Ladina C, Piccarreda D, Fredi P (2009) Evidenze di fagliazione normale tardo-olocenica nel settore compreso fra la conca Subequana e la Media Valle dell’Aterno, a sud dell’area epicentrale del terremoto di L’Aquila del 6 Aprile 2009. Implicazioni sismotettoniche. GNGTS 28° Convegno Nazionale, 16–19 Nov., Trieste (Italy)

  • Falcucci E, Gori S, Moro M, Pisani AR, Melini D, Galadini F, Fredi P (2011) The 2009 L’Aquila earthquake (Italy): what next in the region? Hints from stress diffusion analysis and normal fault activity. Earth Planet Sci Lett. doi:10.1016/j.epsl.2011.03.016

  • Falcucci E, Gori S, Peronace E, Fubelli G, Moro M, Saroli M, Giaccio B, Messina P, Naso G, Scardia G, Sposato A, Voltaggio M, Galli P, Galadini F (2009) The Paganica fault and surface coseismic ruptures caused by the 6 April, 2009, earthquake (L’Aquila, central Italy). Seismol Res Lett 80: 940–950

    Article  Google Scholar 

  • Foglio CARG 1:50,000 (2009) Cartografia Geologica Ufficiale. Foglio N. 369, Sulmona

  • Galadini F, Galli P (2000) Active tectonics in the central Apennines (Italy)—input data for seismic hazard assessment. Nat Hazards 22: 225–270

    Article  Google Scholar 

  • Galadini F, Pantosti D, Boncio P, Galli P, Messina P, Montone P, Pizzi A, Salvi S (2009) Il terremoto del 6 aprile e le conoscenze sulle faglie attive dell’Appennino centrale. Progettazione Sismica 3: ISSN 1973–7432

    Google Scholar 

  • Galli P, and Camassi R (2009) Rapporto sugli effetti del terremoto aquilano del 6 aprile 2009; Dipartimento della Protezione Civile Istituto Nazionale di Geofisica e Vulcanologia QUEST Team, http://www.emidius.mi.ingv.it/DBMI08/aquilano/query_eq/quest.pdf

  • Gallipoli MR, Albarello D, Ceddia M, Da domo A, Di Giacomo D, Giocoli A, Lizza C, Mucciarelli M, Picozzi M, Pilz M, Piscitelli S, Romano G, Sogni D, Vignola L (2009) Misure speditive di geofisica superficiale a supporto della microzonazione in fase di mergenza. GNGTS 28° Convegno Nazionale, 16–19 Nov., Trieste (Italy)

  • Géli L, Bard PY (1988) The effect of topography on earthquake ground motion: a review and new results. Bull Seismol Soc Am 78: 42–63

    Google Scholar 

  • Graizer V (2009) Low-velocity zone and topography as a source of site amplification effect on Tarzana Hill, California. Soil Dyn Earthq Eng 29: 324–332

    Article  Google Scholar 

  • Griffiths DW, Bollinger GA (1979) The effect of Appalachian Mountain topography on seismic waves. Bull Seismol Soc Am 69: 1081–1105

    Google Scholar 

  • Hailemikael S, Lenti L, Martino S, Paciello A, Scarascia Mugnozza G (2010) 2D numerical modelling of observed amplification effects on a carbonate ridge: the Colle di Roio (Italy) case-history. In: Proceedings of the 14 European conference on earthquake engineering (ECEE)—Ohrid (Macedonia), 30-08/03-09 2010, no. 1662, 1–8

  • Hoek E, Bray JW (1981) Rock slope engineering, 3rd edn. Institution of Mining and Metallurgy, London

  • Kawase H, Aki K (1990) Topography effect at the critical SV-wave incidence: possible explanation of damage pattern by the Whittier Narrows, California, earthquake of 1 October 1987. Bull Seismol Soc Am 80: 1–22

    Google Scholar 

  • Komatitsch D, Vilotte JP (1998) The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull Seismol Soc Am 88: 368–392

    Google Scholar 

  • Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremors. Bull Seism Soc Am 88: 228–241

    Google Scholar 

  • Le Brun B, Hatzfeld D, Bard PY, Bouchon M (1999) Experimental study of the ground motion on a large scale topographic hill at Kitherion (Greece). J Seismol 3: 1–15

    Article  Google Scholar 

  • Lermo J, Chavez-Garcia FJ (1993) Are microtremors useful in site response evaluation?. Bull Seismol Soc Am 84: 1350–1364

    Google Scholar 

  • Margaris BN, Boore DM (1998) Determination of Δ σ and κ0 from response spectra of large earthquakes in Greece. Bull Seismol Soc Am 88: 170–182

    Google Scholar 

  • Martino S, Minutolo A, Paciello A, Rovelli A, Scarascia Mugnozza G, Verrubbi V (2006) Seismic microzonation of jointed rock-mass ridges through a combined geomechanical and seismometric approach. Nat Hazards 39: 419–449

    Article  Google Scholar 

  • Massa M, Lovati S, D’Alema E, Ferretti G, Bakavoli M (2010) Experimental approach for estimating seismic amplification effects at the top of a ridge and their implication on ground motion predictions: the case of Narni (Central Italy). Bull Seismol Soc Am 100: 3020–3034

    Article  Google Scholar 

  • McNamara DE, Buland RP (2004) Ambient noise levels in the continental United States. Bull Seismol Soc Am 94(4): 1517–1527

    Article  Google Scholar 

  • Miccadei E, Barberi R, De Caterini G (1997) Nuovi dati geologici sui depositi quaternari della conca Subequana (Appennino abruzzese). Il Quaternario (Italian Journal of Quaternary Sciences) 10(2): 85–488

    Google Scholar 

  • Nakamura Y (1989) A method for dynamic characteristics estimations of subsurface using microtremors on the ground surface. Q Rept RTRI Jpn 30: 25–33

    Google Scholar 

  • Nogoshi M, Igarashi T (1971) On the amplitude characteristics of microtremor (part 2). J Seismol Soc Jpn 24: 26–40 (In Japanese with English abstract)

    Google Scholar 

  • Paolucci R (2002) Amplification of earthquake ground motion by steep topographic irregularities. Earthq Eng Struct Dyn 31: 1831–1853

    Article  Google Scholar 

  • Patacca E, Scandone P, Di Luzio E, Cavinato GP, Parotto M (2008) Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide. Tectonics 27: TC3006

    Article  Google Scholar 

  • Pedersen H (1994) Ground-motion amplitude across ridges. Bull Seismol Soc Am 84: 1786–1800

    Google Scholar 

  • Pischiutta M, Cultrera G, Caserta A, Luzi L, Rovelli A (2010) Topographic effects on the hill of Nocera Umbra, central Italy. Geophys J Int 2(182): 977–987. doi:10.1111/j.1365-246X.2010.04654.x

    Article  Google Scholar 

  • Pondrelli S, Salimbeni S, Ekstrom G, Morelli A, Gasperini P, Vannucci G (2006) The Italian CMT dataset from 1977 to the present. Phys Earth Planet Interiors 159: 286–303

    Article  Google Scholar 

  • Ponti DJ, Wells RE (1991) Off-fault ground ruptures in the Santa Cruz Mountains, California: Ridge-top spreading versus tectonic extension during the 1989 Loma Prieta earthquake. Bull Seism Soc Am 81: 1480–1510

    Google Scholar 

  • Rossi A, Tertulliani A, Vecchi M (2005) Studio macrosismico del terremoto dell’Aquilano del 24 giugno 1958. Il Quaternario (Italian Journal of Quaternary Sciences) 18: 101–112

    Google Scholar 

  • Rovelli A, Caserta A, Marra F, Ruggiero V (2002) Can seismic waves be trapped inside an inactive fault zone? The case study of Nocera Umbra, central Italy. Bull Seismol Soc Am 92: 2217–2232

    Article  Google Scholar 

  • Sánchez-Sesma FJ (1985) Diffraction of elastic SH waves by wedges. Bull Seismol Soc Am 75: 1435–1446

    Google Scholar 

  • Sánchez-Seisma FJ (1990) Elementary solutions for response of a wedgeshaped medium to incident SH and SV waves. Bull Seismol Soc Am 80: 737–742

    Google Scholar 

  • Sánchez-Sesma FJ, Campillo M (1991) Diffraction of P, SV, and Rayleigh waves by topographical features: a boundary integral formulation. Bull Seismol Soc Am 81: 2234–2253

    Google Scholar 

  • Sanchez-Sesma F, Herrera I, Aviles J (1982) A boundary method for elastic wave diffraction: application to scattering of SH waves by surface irregularities. Bull Seismol Soc Am 72: 473–490

    Google Scholar 

  • Spudich P, Hellweg M, Lee WH (1996) Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: implication for mainshock motion. Bull Seismol Soc Am 86: 193–208

    Google Scholar 

  • Tertulliani A, Rossi A, Cucci L, Vecchi M (2009) L’Aquila (Central Italy) earthquakes: the predecessors of the April 6, 2009 event. Seismol Res Lett 80(6): 972–977

    Article  Google Scholar 

  • Working Group CPTI (2008) Catalogo Parametrico dei Terremoti Italiani, versione 2008 (CPTI08). INGV, Bologna, Italy. http://www.emidius.mi.ingv.it/CPTI/ (Last check of the availability: Sept. 2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Marzorati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzorati, S., Ladina, C., Falcucci, E. et al. Site effects “on the rock”: the case of Castelvecchio Subequo (L’Aquila, central Italy). Bull Earthquake Eng 9, 841–868 (2011). https://doi.org/10.1007/s10518-011-9263-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-011-9263-5

Keywords

Navigation