Skip to main content
Log in

Quantitative archaeoseismological investigation of the Great Theatre of Larissa, Greece

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Larissa, the capital of Thessaly, is located in the eastern part of Central Greece, at the southern border of a Late Quarternary graben, the Tyrnavos Basin. Palaeoseismological, morphotectonic, and geophysical investigations as well as historical and instrumental records show evidences for seismic activity in this area. Previous investigations documented the occurrence of several moderate to strong earthquakes during Holocene time on active faults with recurrence intervals of a few thousand years. The historical and instrumental records suggest a period of seismic quiescence during the last 400–500 years. The present archaeoseismological research, based on a multidisciplinary approach is devoted to improve the knowledge on past earthquakes, which occurred in the area. This study focuses on damages observed on the walls of the scene building of the Great Theatre of Larissa. The Theatre was built at the beginning of the third century BC and consists of a semicircular auditorium, an almost circular arena and a main scene building. Archaeological and historical investigations document a partial destruction of the theatre during the second to first century BC. Recent excavations show that the building complex after it was repaired suffered additional structural damages, probably from seismic loading. The damages investigated in detail are displacements, rotations and ruptures of numerous blocks at the walls of the scene building. In order to test the earthquake hypothesis as cause of the damages a simplified seismotectonic model of the Tyrnavos Basin and its surroundings was used with a composite earthquake source model to calculate synthetic seismograms at the Larissa site for various earthquake scenarios. Horizontal to vertical seismic ratio (HVSR) measurements in the theatre and its vicinity were used to estimate local site effects. The synthetic seismograms are then used as input accelerations for a finite element model of the walls, which simulates seismically induced in-plane sliding within the walls. Results show that some of the surrounding faults have the potential to produce seismic ground motion that can induce in-plane sliding of blocks. Model calculations were used to constrain the characteristics of the ground acceleration and infer the causative fault and earthquake by comparing the calculated and observed distribution of the displacements of the blocks. Ground motions with a PGA at the site of 0.62–0.82 g, which could be induced by an M 5.8–6.0 earthquake on the nearby Larissa Fault, would be sufficient to explain the damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson NA, Shedlock KM (1997) Overview. Seismol Res Lett 68: 9–23

    Google Scholar 

  • Aki K, Richards PG (1980) Quantitative seismology. Freeman and Co, New York

    Google Scholar 

  • Ambraseys N (1971) Value of historical records of earthquakes. Nature 232: 375–379

    Article  Google Scholar 

  • Andrews DJ (1986) Objective determination of source parameters and similarity of earthquakes of difference size. In: Das S, Boatwright J, Scholz CH (eds) Earthquake source mechanics. American Geophysical Monograph, vol 37, pp 259–268

  • Atkinson GM, Boore DM (2003) Empirical ground-motion relations for subduction-zone earthquakes and their application to cascadia and other regions. Bull Seism Soc Am 93: 1703–1729

    Article  Google Scholar 

  • Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America, EOS Trans AGU, 81:F897

  • Boatwright J, Seekins LC, Fumal TE, Liu H-P, Mueller CS (1991) Ground motion amplification in the Marina district. Bull Seism Soc Am 81(5): 1980–1997

    Google Scholar 

  • Bommer JJ, Stafford PJ, Alarcón JE, Akkar S (2007) The influence of magnitude range on empirical ground-motion prediction. Bull Seism Soc Am 97: 2152–2170

    Article  Google Scholar 

  • Caputo R (1990) Geological and structural study of the recent and active Brittle deformation of the neogene-quarternary basins of Thessaly (Greece). Scientific Annals, 12, Aristotle University of Thessaloniki, vol 2, 5 encl., 252 pp (Thessaloniki)

  • Caputo R (1995) Inference of a seismic gap from geological data: Thessaly (Central Greece) as a case study. Ann Geofisica 38: 1–19

    Google Scholar 

  • Caputo R (2005) Ground effects of large morphogenic earthquakes. J Geodyn 40(2–3): 113–118

    Article  Google Scholar 

  • Caputo R, Helly B (2000) Archéosismicité de l‘Égée: Étude des failles actives de la Thessalie. Bull Corresp Hell 124(2): 560–588 (Athens)

    Article  Google Scholar 

  • Caputo R, Helly B (2005a) Archaeological evidences of past earthquakes: a contribution to the SHA of Thessaly, Central Greece. J Earthq Eng 9(2): 199–222

    Article  Google Scholar 

  • Caputo R, Helly B (2005b) The Holocene activity of the Rodia fault, Central Greece: J Geodyn. doi:10.1016/j.jog.2005.07.004

  • Caputo R, Helly B (2008) The use of distinct disciplines to investigate past earthquakes. Tectonophys. doi:10.1016/j.tecto.2007.05.007

  • Caputo R, Pavlides S (1993) Late Cainozoic geodynamic evolution of Thessaly and surroundings (Central-Northern Greece). Tectonophys 223(3–4): 339–362

    Article  Google Scholar 

  • Caputo R, Bravard J-P, Helly B (1994) The Pliocene-quaternary tecto-sedimentary evolution of the Larissa Plain (Eastern Thessaly, Greece). Geodin Acta 7: 57–85

    Google Scholar 

  • Caputo R, Piscitelli S, Oliveto A, Rizzo E, Lapenna V (2003) The use of electrical resistivity tomography in active tectonics. Examples from the Tyrnavos Basin, Greece. J Geodyn 36(1–2): 19–35

    Article  Google Scholar 

  • Caputo R, Helly B, Pavlides S, Papadopoulos G (2004) Palaeoseismological investigation of the Tyrnavos Fault, Central Greece. A contribution to the seismic hazard assessment of Thessaly. Tectonophys. doi:10.1016/j.tecto.2004.07.047

  • Caputo R, Helly B, Pavlides S, Papadopoulos G (2006) Archaeo- and palaeoseismological investigations in Northern Thessaly (Greece): insights for the seismic potential of the region. Nat Haz. doi:10.1007/s11069-006-0023-9

  • Chetouane B, Vinches M, Dubois F, Bohatier C, Devillers Ph, Nemoz-Gaillard M (2008) Analyse comparée de différentes modélisations du comportement au séisme de monuments en pierres sèches. Actes des VIe et VIIe Rencontres du Groupe APS, 113–126

  • Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29: 47–65

    Article  Google Scholar 

  • D’Asdia P, D’Ayala D (1991) L’analisi del comportamento attritivo di murature costituite da grandi blocchi a secco. Atti del 5°Convegno Nazionale “L’Ingegneria Sismica in Italia”, Palermo, pp 479–490

  • De Rossi MS (1874) La basilica di Santa Petronilla presso Roma, testé discoperta, caduta per terremoto. Bull Vul Ital 1: 62–65

    Google Scholar 

  • Decker K, Gangl G, Kandler M (2006) The earthquake of Carnuntum in the fourth century A.D.—archaeological results, seismologic scenario and seismotectonic implications for the Vienna Basin fault, Austria. J Seism 10(4):479–495, Springer Netherlands

    Google Scholar 

  • Drakatos D, Voulgaris N, Pirli M, Melis N, Karakostas B (2005) 3-D crustal velocity structures in Northwestern Greece. Pure and Appl Geophys 162: 37–51

    Article  Google Scholar 

  • Evans A (1928) The palace of Minos, Part 2, pp 844 (London)

  • Fäh D, Steimen S, Oprsal I, Ripperger J, Wössner J, Schatzmann R, Köstli P, Spottke I, Huggenberger P (2006) The earthquake of 250 A.D. in Augusta Raurica, a real event with 3D site-effect? J Seism 10(4): 459–477

    Article  Google Scholar 

  • Galadini F, Hinzen K-G, Stiros S (eds) (2006a) Archaeoseismology: methodological issues and procedure. J Seism 10(4), Springer Netherlands

  • Galadini F, Hinzen K-G, Stiros S (2006b) Preface. J Seism 10(4), Springer Netherlands

  • Giuffrè A, Rovelli A, Tocci C (1995) Effetti sismici sulle colonne coclidi di Roma: indagini numeriche e sperimentali. Atti del 7°Convegno Nazionale “L’Ingegneria Sismica in Italia”, Siena, pp 1071–1080

  • Grimaldi A, Luciano R, Sacco E (1991) Analisi dinamica di grandi strutture monumentali a blocchi. Atti del 5°Convegno Nazionale “L’Ingegneria Sismica in Italia”, Palermo, 1421–1430

  • Hinzen K-G (2005) The use of engineering seismological models to interpret archaeoseismological findings in Tolbiacum, Germany: a case study. Bull Seism Soc Am 95(2): 521–539

    Article  Google Scholar 

  • Hinzen K-G (2008) Can ruins indicate a backazimuth? Seismol Res Let 79(2): 290

    Google Scholar 

  • Hinzen K-G, Schütte S (2003) Evidence for earthquake damage on roman buildings in Cologne, Germany. Seismol Res Lett 74(2): 124–140

    Google Scholar 

  • Keaton JR (1999) Synthetic seismograms for normal-faulting earthquakes using the composite source model. Report of the EERI-FEMA national earthquake hazards reduction program 1999 Professional Fellowship in Earthquake Engineering

  • Kementzetzidou D (1996) Étude sismotectonique du système Thessalie-îles Sporades (Grèce centrale). Ph.D. thesis, Université J. Fourier-Grenoble I, 151 pp, Grenoble

  • Knödel K, Krummel H, Lange G (1997) Geophysik–Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, Band 3, BGR. Springer, Berlin

    Google Scholar 

  • Korjenkov AM, Mazor E (1999) Seismogenic origin of the ancient Avdat ruins, Negev Desert, Israel. Nat Hazards 18: 193–226

    Article  Google Scholar 

  • Korjenkov AM, Arrowsmith JR, Crosby C, Mamyrov E, Orlova LA, Povolotskaya IE, Tabaldiev K (2006) Seismogenic destruction of the Kamenka medieval fortress, northern Issyk-Kul region, Tien Shan (Kyrgyzstan). J Seism 10(4): 431–442

    Article  Google Scholar 

  • Liberatore D, Larotonda A, Dolce M (1998) Dynamic analysis of voussoir arches under seismic actions. In: Proceedings of the 2nd national workshop. The protection of Cultural Heritage. The Seismic Problem, Rome, April 9–10, 1997, pp 551–571

  • Mazor E, Korjenkov A (2001) Applied archaeoseismology: decoding earthquake parameters recorded in archaeological Ruins. In: Krasnov B, Mazor E (eds) The makhteshim country: a laboratory of nature—geological and ecological studies in the desert region of Israel, pp 423, Pensoft (Sofia, Moskov)

  • Mistler M, Butenweg C, Meskouris K (2006) Modelling methods of historic masonry buildings under seismic exitation. J Seism 10(4):497–510, Springer Netherlands

    Google Scholar 

  • Mooney WD, Laske G, Masters TG (1998) A global crustal model at 5° ×  5°. J Geophys Res 103(B1): 727–748

    Article  Google Scholar 

  • Nikonov AA (1988) On the methodology of archeoseismic research into historical monuments In: Marinos PG, Koukis GC (eds) Engineering eology of ancient works, monuments and historical sites, preservation and protection, Balkema, Rotterdam, 1315–1320

  • Nikonov AA (1996) The disappearance of the ancient towns of Dioscuria and sebastopolis in Colchis on the Black Sea: a problem in engineering geology and paleoseismology In: Stiros S, Jones RE (eds) Archaeoseismology, British School at Athens, fitch laboratory occasional paper 7, 195–204, The Short Run Press (Exeter)

  • Oliveto A.N, Mucciarelli M, Caputo R (2004) HVSR prospections in multi-layered environments: an example from the Tyrnavos Basin (Greece). J Seism 8: 395–406

    Article  Google Scholar 

  • Pagnoni T (1995) Seismic analysis of masonry and block structures with the discrete element method. In: Proceedings of the 10th European conference on earthquake engineering, Vienna, 1669–1674

  • Papaioannou I (1981) O seismos tis Larisas tou 1892 [The 1892 earthquake of Larissa]. Newspaper Eleftheria, March 15, 1981, Larissa [in Greek]

  • Papazachos BC, Papazachou C (1997) The earthquakes of Greece, Editions ZITI, Thessaloniki, pp 304

  • Pavlides S, Caputo R (2004) Magnitude versus faults′surface parameters: quantitative relationships from the Aegaean Region. Tectonophys 380: 159–188

    Article  Google Scholar 

  • Press F (1966) Seismic velocities—handbook of physical constants—revised edition, Section 9. The Geological Society of America Memoir, p 97

  • Psycharis I, Jennings PC (1983) Rocking of slender rigid bodies allowed to uplift. Earthq Eng and Struct Dyn 11(1): 57–76

    Article  Google Scholar 

  • Reinecker J, Heidbach O, Tingay M, Sperner B, Müller B (2005) The 2005 release of the world stress map (available online at http://www.world-stress-map.org)

  • Sarubbi P (2005) Modellazione ed analisi di strutture murarie a blocchi—Un caso studio: Il Grande Teatro di Larissa (Grecia). Tesi di Laurea, Università degli Studi della Basilicata, Facoltà di Ingegneria, 203 pp, Potenza

  • Scherbaum F, Cotton F, Staedtke H (2006) The estimation of minimum-misfit stochastic models from empirical ground-motion prediction equations. Bull Seis Soc Am 96: 427–445

    Article  Google Scholar 

  • Seber D, Sandvol E, Sandvol C, Brindisi C, Barazangi M (2001) Crustal model for the middle East and North Africa region: implications for the isostatic compensation mechanism. Geophys J Int 147(3): 630–638

    Article  Google Scholar 

  • Sogreah (1974) Ground water development project of the plain of Thessaly. Final Report R. 11971, Grenoble, December 1974, unpublished

  • Stiros S, Jones RE (eds) (1996) Archaeoseismology. British School at Athens, Fitch Laboratory occasional paper 7, 268 pp, The Short Run Press (Exeter)

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seism Soc Am 84(4): 974–1002

    Google Scholar 

  • Zelt BC, Taylor B, Sachpazi M, Hirn A (2005) Crustal velocity and Moho structure beneath the Gulf of Corinth, Greece. Geophys J Int 162: 257–268

    Article  Google Scholar 

  • Zeng Y, Anderson JG, Yu G (1994) A composite source model for computing realistic synthetic strong ground motions. Geophys Res Lett 21(8): 725–728

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Caputo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caputo, R., Hinzen, KG., Liberatore, D. et al. Quantitative archaeoseismological investigation of the Great Theatre of Larissa, Greece. Bull Earthquake Eng 9, 347–366 (2011). https://doi.org/10.1007/s10518-010-9206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-010-9206-6

Keywords

Navigation