Skip to main content
Log in

Equivalent linear substructure approximation of soil–foundation–structure interaction: model presentation and validation

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

An equivalent linear substructure approximation of the soil–foundation–structure interaction is proposed in this paper. Based on the inherent linearity of the approach, the solution of the structural and the soil domain is obtained simultaneously, incorporating the effects of the primary and secondary soil nonlinearities. The proposed approximation is established theoretically and then validated against centrifuge benchmark soil–foundation–structure interaction tests. The equivalent linear substructure approximation is proved to simulate efficiently the effects of the nonlinear soil behavior on the soil–foundation–structure system under a strong earthquake ground motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubry D, Clouteau D (1992) A subdomain approach to dynamic Soil–structure interaction. In: Recent advances in earthquake engineering and structural dynamics. Ouest Editions/AFPS, Nantes, France, pp 251–272

  • Bielak J (1975) Dynamic behavior of structures with embedded foundations. Earthq Eng Struct Dynam 3: 259–274. doi:10.1002/eqe.4290030305

    Article  Google Scholar 

  • Bode C, Hirschauer R, Savidis S (2002) Soil–structure interaction in the time domain using halfspace Green’s functions. Soil Dyn Earthq Eng 22(4): 283–295. doi:10.1016/S0267-7261(02)00020-9

    Article  Google Scholar 

  • Boore D, Stephens C, Joyner W (2002) Comments on baseline correction of digital strongmotion data: examples from the 1999 hector mine, california, earthquake. Bull Seismol Soc Am 92(4): 1543–1560. doi:10.1785/0120000926

    Article  Google Scholar 

  • Brennan A, Madabhushi S (2002) Design and performance of a new deep model container for dynamic centrifuge testing. In: Proceedings of the international conference on physical modelling in geotechnics, Balkema, Rotterdam, The Netherlands, St Johns NF, Canada, pp 183–188

  • Chopra A (2001) Dynamics of structures. Prentice Hall Inc, Upper Saddle River

    Google Scholar 

  • Clouteau D (2005) MISS 6.4: manuel utilisateur: version 2.3. Chatenay-Malabry, France

    Google Scholar 

  • Clouteau D, Aubry D (2003) Computational soil–structure interaction. In: Boundary element methods for soil–structure interaction, Kluwer Academic Publishers, chap. 2, pp 61–126

  • Gazetas G (1983) Analysis of machine foundation vibrations: state of the art. Soil Dyn Earthq Eng 2(1): 2–42. doi:10.1016/0261-7277(83)90025-6

    Article  Google Scholar 

  • Gazetas G (1991) Formulas and charts for impedances of surface and embedded foundations. J Geotech Eng Div 117(9): 1363–1381. doi:10.1061/(ASCE)0733-9410(1991)117:9(1363)

    Article  Google Scholar 

  • Ghosh B, Madabhushi S (2007) Centrifuge modelling of seismic soil structure interaction effects. Nucl Eng Des 237(8): 887–896. doi:10.1016/j.nucengdes.2006.09.027

    Article  Google Scholar 

  • Halabian A, Naggar MHE (2002) Effect of non-linear soil-structure interaction on seismic response of tall slender structures. Soil Dyn Earthq Eng 22: 639–658. doi:10.1016/S0267-7261(02)00061-1

    Article  Google Scholar 

  • Karabalis D (2004) Non-singular time domain BEM with applications to 3D inertial soil– structure interaction. Soil Dyn Earthq Eng 24(3): 281–293. doi:10.1016/j.soildyn.2003.10.002

    Article  Google Scholar 

  • Kausel E, Roesset J, Christian J (1976) Nonlinear behavior in soil-structure interaction. J Geotech Eng Div 102(GT12): 1159–1178

    Google Scholar 

  • Kokusho T (1980) Cyclic triaxial test of dynamic soil properties for wide strain range. Soil Found 20(4): 45–60

    Google Scholar 

  • Madabhushi S, Schofield A, Lesley S (1998) A new stored angular momentum based earthquake actuator. In: Proceedings of centrifuge ’98, Tokyo, pp 111–116

  • Mylonakis G, Nikolaou S, Gazetas G (2006) Footings under seismic loading: analysis and design issues with emphasis on bridge foundations. Soil Dyn Earthq Eng 26(9): 824–853. doi:10.1016/j.soildyn.2005.12.005

    Article  Google Scholar 

  • Pitilakis D (2006) Soil–structure interaction modeling using equivalent linear soil behavior in the substructure method. Ph.D. thesis, LMSS-Mat, Ecole Centrale Paris, France

  • Pitilakis D, Dietz M, Wood DM, Clouteau D, Modaressi A (2008) Numerical simulation of dynamic soil-structure interaction in shaking table testing. Soil Dyn Earthq Eng 28(6): 453–467. doi:10.1016/j.soildyn.2007.07.011

    Article  Google Scholar 

  • Roesset JM, Tassoulas JL (1982) Non linear soil-structure interaction: an overview. In: Datta SK (ed). Earthquake ground motion and its effects on structures, vol 53. ASME, AMD, Newyork, 59–76

  • Schofield A (1980) Cambridge geotechnical centrifuge operations. Twentieth rankine lecture. Geotechnique 30(3): 227–268

    Article  Google Scholar 

  • Schofield A (1981) Dynamics and earthquake geotechnical centrifuge modelling. In: Proceedings of the international conference on recent advances in geotechnical earthquake engineering and soil dynamics, University of Missouri-Rolla, Rolla, Missouri 3:1081–1100

  • Seed H, Wong R, Idriss I, Tokimatsu K (1986) Moduli and damping factors for dynamic analyses of cohesionless soil. J Geotech Eng 112(11): 1016–1032. doi:10.1061/(ASCE)0733-9410(1986)112:11(1016)

    Article  Google Scholar 

  • Stewart J, Fenves G, Seed R (1999) Seismic soil–structure interaction in buildings i: analytical methods. J Geotech Geoenviron Eng 125(1): 26–37. doi:10.1061/(ASCE)1090-0241(1999)125:1(26)

    Article  Google Scholar 

  • Veletsos A, Meek J (1974) Dynamic behavior of building-foundation systems. Earthq Eng Struct Dynam 3: 121–138. doi:10.1002/eqe.4290030203

    Article  Google Scholar 

  • Veletsos A, Verbic B (1973) Vibration of viscoelastic foundations. Earthq Eng Struct Dynam 2: 87–102. doi:10.1002/eqe.4290020108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Pitilakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitilakis, D., Clouteau, D. Equivalent linear substructure approximation of soil–foundation–structure interaction: model presentation and validation. Bull Earthquake Eng 8, 257–282 (2010). https://doi.org/10.1007/s10518-009-9128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-009-9128-3

Keywords

Navigation