Skip to main content
Log in

Ground-Motion Prediction Equations (GMPEs) for inelastic displacement and ductility demands of constant-strength SDOF systems

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

The objective of this paper is to present ground-motion prediction equations for ductility demand and inelastic spectral displacement of constant-strength perfectly elasto-plastic single-degree-of-freedom (SDOF) oscillators. Empirical equations have been developed to compute the ductility demand as a function of two earthquake parameters; moment magnitude, and source-to-site distance; one site parameter, the ground type; and three oscillator parameters, an undamped natural period, critical damping ratio, and the mass-normalized yield strength. In addition, a comparative study of the proposed model with selected previous studies and recommendations of Eurocode 8 is presented. Proposed equations can easily be incorporated in existing probabilistic seismic hazard analysis (PSHA) software packages with the introduction of an additional parameter. This leads to hazard curves for inelastic spectral displacement, which can provide better estimates of target displacement for nonlinear static procedures and an efficient intensity measure for probabilistic seismic demand analysis (PSDA). Proposed equations will be useful in performance evaluation of existing structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akkar SD, Miranda E (2005) Statistical evaluation of approximate methods for estimating maximum deformation demands on existing structures. J Struct Eng 31(1). doi:10.1061/(ASCE)0733-9445(2005)131:1(160)

  • Ambraseys NN, Simpson KA, Bommer JJ (1996) Prediction of horizontal response spectra in Europe. Earthq Eng Struct Dyn 25(4): 371–400. doi:10.1002/(SICI)1096-9845(199604)25:4<371::AID-EQE550>3.0.CO;2-A

    Article  Google Scholar 

  • Ambraseys NN, Smit P, Douglas J, Margaris B, Sigbjörnsson R, Olfasson S, Suhadolc P, Costa G (2004a) Internet site for European strong-motion data. Boll Geof Teor Appl 45: 113–129

    Google Scholar 

  • Ambraseys NN, Douglas J, Sigbjörnsson R, Berege-Thierry C, Suhadolc P, Costa G (2004b) European strong-motion database, vol 2. Imperial College, London

    Google Scholar 

  • Applied Technology Council (ATC) 40 (1996) Seismic evaluation and retrofit of concrete buildings. Applied Technology Council, Redwood City

  • Bommer JJ, Elnashai AS (1999) Displacement spectra for seismic design. J Earthq Eng 3(1): 1–32

    Article  Google Scholar 

  • Borzi B, Elnashai AS (2000) Refined force reduction factors for seismic design. Eng Struct 22(10): 1244–1260. doi:10.1016/S0141-0296(99)00075-9

    Article  Google Scholar 

  • Borzi B, Calvi GM, Elnashai AS, Faccioli E, Bommer JJ (2001) Inelastic spectra for displacement-based seismic design. Soil Dyn Earthq Eng 21: 47–61. doi:10.1016/S0267-7261(00)00075-0

    Article  Google Scholar 

  • Boyce WE, DiPrima RC (2000) Elementary differential equations and boundary value problems. Wiley, New York

    Google Scholar 

  • Bozorgnia Y, Hachem MM, Campbell KW (2006) Attenuation of inelastic and damage spectra. Proceedings of the 8th U.S. National conference on earthquake engineering, April 18–22, 2006, San Francisco, California, USA, Papaer No. 1127.

  • Chopra AK, Chintanapakdee C (2004) Inelastic deformation ratios for design and evaluation of structures: single-degree-of-freedom bilinear systems. J Struct Eng 130(9): 1309–1319. doi:10.1061/(ASCE)0733-9445(2004)130:9(1309)

    Article  Google Scholar 

  • Chopra AK, Goel R (1999) Capacity-demand diagram methods based on inelastic design spectrum. Earthq Spectra 15(4): 637–656. doi:10.1193/1.1586065

    Article  Google Scholar 

  • Decanini LD, Liberatore L, Mollaioli F (2003) Characterization of displacement demand for elastic and inelastic SDOF systems. Soil Dyn Earthq Eng 23: 455–471

    Article  Google Scholar 

  • Douglas J (2003) Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth Sci Rev 61(1–2): 43–104. doi:10.1016/S0012-8252(02)00112-5

    Article  Google Scholar 

  • Elghadamsi FE, Moraz B (1987) Inelastic earthquake spectra. Earthq Eng Struct Dyn 15(1): 91–104. doi:10.1002/eqe.4290150107

    Article  Google Scholar 

  • European Committee for Standardization (2003) Eurocode 8: design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings, European Standard, Final Draft prEN 1998-1 December 2003, ICS 91.120.20, English version

  • Fajfar P (2000) A nonlinear analysis method for performance-based seismic design. Earthq Spectra 16(3): 573–592. doi:10.1193/1.1586128

    Article  Google Scholar 

  • Farrow KT, Kurama YC (2004) SDOF displacement ductility demands based on smooth ground motion response spectra. Eng Struct 26: 1713–1733. doi:10.10.1016/j.engstruct.2004.06.003

    Article  Google Scholar 

  • Federal Emergency Management Agency (FEMA) 356 (2000) Prestandard and commentary for the seismic rehabilitation of buildings. SAC Joint Venture, Sacramento

  • Goel R, Chopra AK (2001) Improved direct displacement-based design procedure for performance-based seismic design of structures. Proceedings—structures 2001—a structural engineering odyssey, Structural Engineering Institute of ASCE, Reston, VA, Sec. 22, Chap. 4

  • Gulkan P, Sozen M (1974) Inelastic response of reinforced concrete structures to earthquake motions. ACI J 71(12): 604–610

    Google Scholar 

  • Iwan WD (1980) Estimating inelastic response spectra from elastic spectra. Earthq Eng Struct Dyn 24(12): 1623–1643

    Google Scholar 

  • Iwan WD (2002) The use of equivalent linearization in performance based engineering. In: Proceedings of the international conference on advances and new challenges in earthquake engineering research, Institute of Engineering Mechanics, China, China Seismological Bureau, Harbin, China, pp 15–17

  • Jarenprasert S, Bazán E, Bielak J (2006) Inelastic spectrum-based approach for seismic design spectra. J Struct Eng 132(8): 1284–1292. doi:10-1061/(ASCE)0733-9445(2006)132:8(1284)

    Article  Google Scholar 

  • Kowalsky M, Priestley MJN, McRae GA (1995) Displacement-based design of RC bridge columns in seismic regions. Earthq Eng Struct Dyn 24(12): 1623–1643. doi:10.1002/eqe.4290241206

    Article  Google Scholar 

  • Kwan WP, Billington SL (2003) Influence of hysteretic behaviour on equivalent period and damping of structural systems. J Struct Eng 129(5): 576–585. doi:10.1061/(ASCE)0733-9445(2003)129:5(576)

    Article  Google Scholar 

  • Luco N, Manuel L, Baldava S, Bazzurro P (2005) Correlation of damage of steel moment-resisting frames to a vector-valued set of ground motion parameter. In: Proceedings of the 9th international conferences on structural safety and reliability (ICOSSAR05), Rome, Italy, 19–23 June 2005

  • Miranda E (1993) Site-dependent strength reduction factors. J Struct Eng 119(12): 3503–3519. doi:10.1061/(ASCE)0733-9445(1993)119:12(3503)

    Article  Google Scholar 

  • Miranda E, Bertero VV (1994) Strength reduction factors for earthquake-resistant design. Earthq Spectra 10(2): 357–375. doi:10.1193/1.1585778

    Article  Google Scholar 

  • Moehle JP (1992) Displacement-based design of RC structures subjected to earthquakes. Earthq Spectra 8(3): 403–428. doi:10.1193/1.1585688

    Article  Google Scholar 

  • Nassar A, Krawinkler H (1991) Seismic demands of SDOF and MDOF systems. Report No. 95. The John A. Blume Earthquake Engineering Center, Stanford University, California

  • Newmark NM, Hall WJ (1982) Earthquake spectra and design. Earthquake Engineering Research Institute, Berkeley

    Google Scholar 

  • Ordaz M, Pérez-Rocha LE (1998) Estimation of strength reduction factors for elastoplastic systems: a new approach. Earthq Eng Struct Dyn 27(9): 889–901. doi:10.1002/(SICI)1096-9845(199809)27:9<889::AID-EQE755>3.0.CO;2-W

    Article  Google Scholar 

  • Reinhorn A (1997) Inelastic analysis techniques in seismic evaluations. Seismic design methodologies for the next generation of codes. Balkema, Rotterdam, pp 277–287

  • Riddell R, Newmark NM (1979) Statistical analysis of the response of nonlinear systems subjected to earthquakes. Structural research series no. 468. Deparment of Civil Engineering, University of Illinois-Urbana

  • Riddell R, Garcia JE, Garces E (2002) Inelastic deformation response of SDOF systems subjected to earthquakes. Earthq Eng Struct Dyn 31(3): 515–538. doi:10.1002/eqe.142

    Article  Google Scholar 

  • Rosenblueth E, Herrera I (1964) On a kind of hysteretic damping. J Eng Mech Div 90(2): 37–48

    Google Scholar 

  • Ruiz-García J, Miranda E (2003) Inelastic displacement ratios for evaluation of existing structures. Earthq Eng Struct Dyn 31: 1237–1258. doi:10.1002/eqe.271

    Article  Google Scholar 

  • Rupakhety R, Sigbjörnsson R (2009) Ground-motion prediction equations (GMPEs) for inelastic response and structural behaviour factors. Bull Earthq Eng. doi:10.1007/s10518-009-9105-x

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36: 1627–1639. doi:10.1021/ac60214a047

    Article  Google Scholar 

  • Sigbjörnsson R, Snaebjornsson J, Higgins SM, Halldorsson B, Ólafsson S (2008) A note on the Mw 6.3 earthquake in Iceland on 29 May 2008 at 15:45 UTC. Bull Earthq Eng. doi:10.1007/s10518-008-9087-0

  • Tena-Colunga A (2001) Displacement ductility demand spectra for the seismic evaluation of structures. Eng Struct 23: 1319–1330. doi:10.1016/S0141-0296(01)00025-6

    Article  Google Scholar 

  • Tiwari AK, Gupta VK (2000) Scaling of ductility and damage-based strength reduction factors for horizontal motions. Earthq Eng Struct Dyn 29: 969–987. doi:10.1002/1096-9845(200007)29:7<969::AID-EQE948>3.0.CO;2-N

    Article  Google Scholar 

  • Tothong P, Cornell CA (2006) An empirical ground-motion attenuation relation for inelastic spectral displacement. Bull Seismol Soc Am 96(6): 2146–2164. doi:10.1785/0120060018

    Article  Google Scholar 

  • Veletsos AS, Newmark NM (1960) Effect of inelastic behaviour on the response of simple systems to earthquake motions. In: Proceedings of the 2nd world conference on earthquake engineering, Science Council of Japan, Tokyo, Japan, vol 2, pp 895–912

  • Vidic T, Fajfar P, Fischinger M (1994) Consistent inelastic design spectra: strength and displacement. Earthq Eng Struct Dyn 23(5): 507–521. doi:10.1002/eqe.4290230504

    Article  Google Scholar 

  • Yi WJ, Zhang HY, Kunnath SK (2007) Probabilistic constant-strength ductility demand spectra. J Struct Eng 133(4): 567–575. doi:10-1061/(ASCE)0733-9445(2007)133:4(567)

    Article  Google Scholar 

  • Zarowski CJ (2004) An introduction to numerical analysis for electrical and computer engineers. Wiley, New Jersey

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sigbjörnsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupakhety, R., Sigbjörnsson, R. Ground-Motion Prediction Equations (GMPEs) for inelastic displacement and ductility demands of constant-strength SDOF systems. Bull Earthquake Eng 7, 661–679 (2009). https://doi.org/10.1007/s10518-009-9117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-009-9117-6

Keywords

Navigation