Bulletin of Earthquake Engineering

, Volume 5, Issue 3, pp 467–490 | Cite as

A simplified approach for vulnerability assessment in moderate-to-low seismic hazard regions: application to Grenoble (France)

  • Philippe Guéguen
  • Clotaire Michel
  • Laele LeCorre
Original Research Paper

Abstract

Due to the moderate seismic risks in France, the building vulnerability assessment methods developed for high seismic risk countries could not easily be used here because of their cost and the low-risk perception among the public and officials. A light vulnerability assessment method is proposed and tested in Grenoble (France), based on classes and scores provided in the GNDT method but simplified in terms of visual screening and number of structural parameters used. Compared to the RiskUE method, the damage obtained by our approach shows that 90% of buildings have residuals smaller than 0.2, i.e. one grade of the EMS98 damage scale. A large scale survey is devised and conducted among the inhabitants of Grenoble in order to collect the main structural parameters. By comparing the results from the survey to the historical urbanization of Grenoble and to expert surveys performed in two urban districts, the information useful for the light method of vulnerability assessment can be rapidly collected by non-experts reducing substantially the estimate cost. The average damage is then computed using the GNDT formula considering the probable intensities which could be observed in Grenoble (VII and VIII). The average damage reaches 0.4 in the oldest part of Grenoble mainly made of masonry buildings and 0.2 in reinforced concrete suburbs where reinforced concrete predominates. The results are a relative vulnerability assessment that provides useful initial information for the urban zones of Grenoble where the vulnerability is higher. This method can be used to classify the seismic vulnerability in wide seismic-prone regions to a fair degree of accuracy and at low cost.

Keywords

Large scale assessment Grenoble Moderate hazard Quick survey Seismic risk Vulnerability assessment VULNERALP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AFPS. (1996) Le séisme d’Epagny (Haute-Savoie) du 15 juillet 1996. Rapport de mission. AFPS (Ed.), Paris, 128Google Scholar
  2. ATC 21 (1988) Rapid visual screening of buildings for potential seismic hazards: a handbook. Applied Technology Council, Redwood City, CaliforniaGoogle Scholar
  3. Benedetti D and Petrini V (1984). On seismic vulnerability of masonry buildings: proposal of an evaluation procedure. L’Industria delle Costruzioni 18: 66–78 Google Scholar
  4. Calvi GM, Magenes G, Bommer JJ, Pinho R, Crowley H and Restrepo-Vélez LF (2006). Displacement-based methods for seismic vulnerability assessment at variable geographical scale. ISET J Earthquake Technol 43(3): 75–104 Google Scholar
  5. Combescure D, Guéguen P and Lebrun B (2005). Vulnérabilité sismique du bâti existant: approche d’ensemble. Cahier technique, AFPS (Ed) 25: 121 Google Scholar
  6. Cornou C, Bard P.-Y and Dietrich M (2003). Contribution of dense array analysis to the identification and quantification of basin-edge induced waves. Part II: application to Grenoble basin (French Alps). Bull Seism Soc Am 93(6): 2624–2648 Google Scholar
  7. D’Ayala D, Spence R, Oliveira C and Pomonis A (1997). Earthquake loss estimation for Europe’s historic town centres. Earthquake Spectra 13(4): 773–793 CrossRefGoogle Scholar
  8. Dolce M, Masi A, Marino M and Vona M (2003). Earthquake damage scenarios of the building stock of Potenza (Southern Italy) including site effects. Bull Earthquake Eng 1: 115–140 CrossRefGoogle Scholar
  9. EMS98 (2001) L’Echelle Macrosismique Européenne 1998. Conseil de l’Europe, Cahiers du Centre Européen de Géodynamique et de Séismologie, volume 19Google Scholar
  10. Ergunay O, Gulkan P (1991) Seismic risk reduction and disaster management: national report of Turkey. In: Proceedings of workshop on seismic risk reduction and disaster management, Roma, Italy, November, 1991Google Scholar
  11. Faccioli E, Pessina V, Calvi GM and Borzi B (1999). A study on damage scenarios for residential buildings in Catania City. J Seismol 3(3): 327–343 CrossRefGoogle Scholar
  12. Farsi, M. (1996) Identification des structures de génie civil à partir de leurs réponses vibratoires. Vulnérabilité du bâti existant. PhD thesis, University Joseph Fourier, Grenoble, 194 ppGoogle Scholar
  13. FEMA 178 (1997) NEHRP handbook for the seismic evaluation of existing buildings. Federal Emergency Management AgencyGoogle Scholar
  14. GEMGEP (2005) Le risque sismique à Nice, apport méthodologique, résultats et perspectives opérationnelles. Final report project GEMGEP, 7 April 2005, 52 ppGoogle Scholar
  15. GEMITIS (1999) Evaluation des dommages directs d’un séisme sur la ville de Nice: scénarios de risque. Report BRGM R40612, 171 ppGoogle Scholar
  16. Giovinazzi S, Lagomarsino S (2003) Seismic risk analysis: a method for the vulnerability analysis of built-up areas. In: Proceedings of European safety and reliability conference, ESREL, Maastricht, The Netherlands, June 2003Google Scholar
  17. GNDT (1993) Rischio sismico di edifici pubblici—Parte I: aspetti metodologici. Centro Servizi Quasco, BolognaGoogle Scholar
  18. Guéguen P, Cornou C, Garambois S and Banton J (2007). On the limitation of the H/V spectral ratio using seismic noise as an exploration tool: application to the Grenoble valley (France), a small apex ratio basin. Pure Appl Geophys 164(1): 115–134 CrossRefGoogle Scholar
  19. Guéguen P, Vassail T (2003) Typologie de l’agglomération grenobloise. Report VULNERALP, 38 ppGoogle Scholar
  20. HAZUS (1997) Earthquake loss estimation methodology. Hazus technical manuals. National Institute of Building Science, Federal Emergency Management Agency (FEMA), WashingtonGoogle Scholar
  21. Jongmans D, Plumier A (2000) Etude Pilote du risque sismique sur une partie de la ville de Liège, rapport interne, Université de Liège, Faculté des sciences appliquées (in French)Google Scholar
  22. Lebrun B, Hatzfeld D and Bard P-Y (2001). A site effect study in urban area: experimental results in Grenoble (France). PAGEOPH 158: 2543–2557 CrossRefGoogle Scholar
  23. Martin C (1999) Méthodologie d’évaluation du risque sismique aux échelles locale et régionale applicable aux maisons individuelles. Programmes GEMITIS Pointe-à-Pitre et Fort-de-France, contrats de plans Etat-Régions Martinique et Guadeloupe. Report. GTR/BRGM/0188–98Google Scholar
  24. MEDD (1982) Le risque sismique. Délégation aux risques majeurs, 1982Google Scholar
  25. Milutinovic ZV, Trendafiloski GS (2003) WP4-Vulnerability of current buildings, RISK-UE project, 110 ppGoogle Scholar
  26. Oliveira CS (2003). Seismic vulnerability of historical constructions: a contribution. Bull Earthquake Eng 1(1): 37–82 CrossRefGoogle Scholar
  27. Onur T, Ventura CE and Liam Finn WD (2005). Regional seismic risk in British Columbia – damage and loss distribution in Victoria and Vancouver. Can J Civ Eng 32: 361–371 CrossRefGoogle Scholar
  28. Otani S (2000). Seismic vulnerability assessment methods for buildings in Japan. Earthquake Eng & Eng Seismol 2(2): 47–56 Google Scholar
  29. Parent J-F (1982) Grenoble, deux siècles d’urbanisme. Presse Universitaire de Grenoble, 187 ppGoogle Scholar
  30. Pierre J-P and Montagne M (2004). The 20 April 2002, Mw 5.0 Au Sable Forks, New York, earthquake~: a supplementary source of knowledge on earthquake damage to lifelines and buildings in Eastern North America. Seismol Res Lett 75(5): 626–635 CrossRefGoogle Scholar
  31. RiskUE (2003) An advanced approach to earthquake risk scenarios with applications to different european towns, Projet Européen, EVK4-CT-2000–00014Google Scholar
  32. Roca A, Goula X, Susagna T, Chávez J, González M and Reinoso E (2006). A simplified method for vulerability assessment of dwelling buildings and estimation of the damage scenarios in Catalonia (Spain). Bull Earthquake Eng 4(2): 141–158 CrossRefGoogle Scholar
  33. Saito K, Spence R, Going C and Markus M (2004). Using high-resolution satellite images for post-earthquakes building damage assessment: a study following the 26 January 2001 Gujarat earthquake. Earthquake Spectra 20(1): 145–169 CrossRefGoogle Scholar
  34. Schweier C, Markus A and Steinle E (2004). Simulation of earthquake caused building damages for the development of fast reconnaissance techniques. Nat. Hazard Earth Syst. Sci. 4: 285–293 CrossRefGoogle Scholar
  35. Seismocare (1998) Seismocare Computed Aided Reduction of Seismic Risk with application to existing cities, town planning and construction - Directions to fill in the vulnerability form GNDT levels 1 and 2. European project Environment and Climate, 1994–1998, ENV4-CT97–0588Google Scholar
  36. Spence R, Bommer J, Del Re D, Bird J, Aydinoglu N and Tabuchi S (2003). Comparing loss estimation with observed damage: a study of the 1999 Kocaeli earthquake in Turquey. Bull Earthquake Eng 1(1): 83–113 CrossRefGoogle Scholar
  37. Spence R, Lebrun B (ed) (2006) Earthquake scenarios for European cities – the risk-UE project. Bull Earthquake Eng 4(4): special issue.Google Scholar
  38. Steimen S, Faeh D, Giardini D, Bertogg M and Tschudi S (2004). Reliability of building inventories in seismic prone regions. Bull. of Earthquake Engi. 2(3): 361–388 CrossRefGoogle Scholar
  39. Thouvenot F, Fréchet J, Jenatton J and Gamond JF (2003). The Belledonne border fault: indetification of an active seimic strike-slip fault in the western Alps. Geophys J Int 155: 174–192 CrossRefGoogle Scholar
  40. Ventura CE, Liam Finn WD, Onur T, Blanquera A and Rezai M (2005). Regional seismic risk in British Columbia – classification of buildings and development of damage probability functions. Can J Civ Eng 32: 372–387 CrossRefGoogle Scholar
  41. VULNERALP (2004) Projet d’évaluation de la vulnérabilité sismique à Grenoble. http://www-lgit.obs.ujf-grenoble.fr/~pgueg/VULNERALP)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Philippe Guéguen
    • 1
    • 2
  • Clotaire Michel
    • 1
  • Laele LeCorre
    • 1
  1. 1.Maison des GeoscienceLGIT, university of Grenoble, CNRSGrenoble cedex 9France
  2. 2.LCPCParisFrance

Personalised recommendations