Skip to main content
Log in

Nonlinear numerical method for earthquake site response analysis I — elastoplastic cyclic model and parameter identification strategy

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

This paper, along with its companion paper, presents the importance of the adequate soil behaviour model to simulate earthquake site response analysis. An elastoplastic model taking into account the elementary necessary plastic mechanisms such as progressive friction mobilization, Coulomb type failure, critical state and dilatancy/contractance flow rule, is used. However, one of the obstacles in the use of elastoplastic models in the everyday design processes for evaluation of the seismic soil response is the difficulty in identifying their parameters. In this paper, a methodology to identify a coherent set of parameters of the elastoplastic model for a given type of soil is presented. The strategy behind the decision making process proposed here is based on the use of minimum physical and easily measurable properties of the soil to directly provide or indirectly assess the required model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anastasiadis JA, Pitilakis KD (1996) Shear modulus G o and damping of typical Greek soils at low strain amplitudes.Tech Chron Sci J TCG 16(3):9–18

    Google Scholar 

  • Aubry D, Hujeux J-C, Lassoudire F, Meimon Y (1982) A double memory model with multiple mechanisms for cyclic soil behaviour. In: Proceedings of the International Symposium Num. Mod. Geomech, Balkema, pp 3–13

  • Aubry D, Modaressi A, Modaressi H (1990) A constitutive model for cyclic behaviour of interfaces with variable dilatancy. Comput Geotechnics 9(1/2):47–58

    Article  Google Scholar 

  • Bardet J-P (1997) Experimental soil mechanics. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Been K, Jefferies MG (1985) A state parameter for sands. Géotechnique 35(2):99–112

    Google Scholar 

  • Biarez J, Favre J-L (1972) Corrélations de paramètres en mécanique des sols. Table ronde nationale, Ecole Centrale Paris

  • Biarez J, Hicher P-Y (1994) Elementary mechanics of soil behaviour, saturated and remolded soils. Balkema, Amsterdam, The Netherlands

    Google Scholar 

  • Darendeli MB (2001) Development of a new family of normalized modulus reduction and material damping curves. Ph.D. Dissertation, University of Texas at Austin, USA

    Google Scholar 

  • Dickenson SE, Seed RB (1996) Non-linear dynamic response of soft and deep cohesive soil deposits. In: Proceedings of the international workshop on site response subjected to strong earthquake motions, vol 2. Yokosuka, Japan, pp 67–81

  • Dobry R, Ladd RS, Yokel FY, Chung RM, Powell D (1982) Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method. Nat Bur Stand Build Sci Ser 138:11–49

    Google Scholar 

  • Favre J-L (1980) Milieu continu et milieu discontinu: mesure statistique indirecte des paramètres rhéologiques et approche probabiliste de la sécurité. Thèse de docteur ès sciences, Univ. Pierre et Marie Curie, Paris VI, France

  • Ghaboussi J., Dikmen SU (1978) Liquefaction analysis of horizontally layered sands. J Geotechn Eng Div ASCE 104(nr GT3):341–356

    Google Scholar 

  • Hardin BO (1978) The nature of stress-strain behavior for soils. In: Proceedings ASCE geotechnical engineering division. Specially conference on earthquake engineering and soil dynamics, vol.1 Pasadena, CA, pp 3–89

  • Hicher P.Y, Rahma A (1994) Micro-macro correlations for granular media. Application to the modelling of sands. Eur J Mechanics A/Solids 13(6):763–781

    Google Scholar 

  • Hujeux J-C (1985) Une loi de comportement pour le chargement cyclique des sols. In: Davidovici V, (ed) Génie Parasismique. Presses ENPC, France, pp 278–302

  • Idriss IM (1991) Earthquake ground motions at soft soil sites. In: Prakash S (eds). Proceedings of the 2nd international conference on recent advances in geotechnical earthquake engineering and soil dynamics, vol 3. St. Louis, Missouri, pp 2265–2271

  • Ishibashi I, Zhang X (1993) Unified dynamic shear moduli and damping ratios of sand and clay. Soils Found 33(1):182–191

    Google Scholar 

  • Ishihara K (1993) Liquefaction and flow failure during earthquakes. 33rd Rankine lecture. Géotechnique 43(3):351–415

    Article  Google Scholar 

  • Ishihara K, Tatsuoka F, Yasuda S (1975) Undrained deformation and liquefaction of sand under cyclic stresses. Soils Found 15(1):29–44

    Google Scholar 

  • Iwasaki T, Tatsuoka F, Takagi Y (1978) Shear moduli of sands under cyclic torsional shear loading. Soils Found 18(1):39–56

    Google Scholar 

  • Jamiolkowski M, Ladd CC, Germaine JT, Lancellotta R (1985) New developments in field and laboratory testing of soils. In: Proceedings of the 11th international conference on soil mechanics and foundations engineering, vol 1. San Francisco, CA, pp 57–154

  • Kallioglou P, Tika Th, Pitilakis K (1999) Dynamic characteristics of natural cohesive soils. In: Proceedings of the 2nd international conference on earthquake geotechnical engineering. Lisbon, Portugal

  • Kohata Y, Tatsuoka F, Wang L, Jiang GL, Hoque E, Kodaka T (1997) Modelling the non-linear deformation properties of stiff geomaterials. Symposium in print. Géotechnique 47(3):563–580

    Google Scholar 

  • Kokusho T (1980) Cyclic triaxial test of dynamic soil properties for wide strain range. Soils Found 20(4):45–60

    Google Scholar 

  • Kokusho T, Yoshida Y, Esashi Y (1982) Dynamic properties of soft clays for wide strain range. Soils Found 22(4):1–18

    Google Scholar 

  • Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Mellal A (1997) Analyse des effets du comportement non linéaire des sols sur le mouvement sismique. Thèse de doctorat, École Centrale Paris, France

  • Modaressi H, Foerster E (2000) CyberQuake. User’s manual, BRGM, France

  • Pande GN, Pietruszczak S, (1986) A critical look at constitutive models for soils. In: Dungar R, Studer JA (ed) Geomechanical modelling in engineering practice. Balkema AA, Rotterdam, The Netherlands, pp 369–395

    Google Scholar 

  • Prévost J-H, Hoeg K (1975) Effective stress-strain strength model for soils. J Geotechnical Eng Div ASCE 101(nr GT3):259–278

    Google Scholar 

  • Saim R (1997) Dès comportements repères des grains sans colle à un exemple de sol réel. Thèse de doctorat, École Centrale, Paris France

  • Santos JA (1999) Caracterização de solos através de ensaios dinâmicos e cíclicos de torção ; Aplicação ao estudo do comportamento de estacas sob acções horizontais estáticas e dinâmicas. Dissertação Doutor, Universidade Técnica de Lisboa, Instituto Superior Técnico, Portugal

  • Schofield AN, Wroth CP (1968) Critical state soil mechanics. McGraw-Hill, London

    Google Scholar 

  • Seed HB, Idriss IM (1970) Soil moduli and damping factors for dynamic response analyses. University of California, Berkeley, CA, Report EERC-70-10, Earthquake Engineering Research Center

  • Seed HB, Wong RT, Idriss IM, Tokimatsu K (1986) Moduli and damping factors for dynamic analyses of cohesionless soils. J Geotechnical Eng ASCE 112(11):1016–1032

    Article  Google Scholar 

  • Sun JI, Golesorkhi R, Seed HB (1988) Dynamic moduli and damping ratios for cohesive soils. University of California, Berkeley, CA, EERC-88-15

    Google Scholar 

  • Vucetic M (1994) Cyclic threshold shear strains in soils. J Geotechnical Eng ASCE 120(12):2208–2228

    Article  Google Scholar 

  • Vucetic M, Dobry R (1991) Effect of soil plasticity on cyclic response. J Geotechnical Eng ASCE 117(1):89–107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez-Caballero, F., Razavi, A.MF. & Modaressi, H. Nonlinear numerical method for earthquake site response analysis I — elastoplastic cyclic model and parameter identification strategy. Bull Earthquake Eng 5, 303–323 (2007). https://doi.org/10.1007/s10518-007-9032-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-007-9032-7

Keywords

Navigation