Skip to main content

Advertisement

Log in

S-wave Velocity Profiles for Earthquake Engineering Purposes for the Cologne Area (Germany)

  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Local S-wave velocity-depth profiles are a key factor in seismic hazard assessment, as they allow the amplification potential of the sedimentary cover to be evaluated. Ambient seismic noise is mainly composed of surface waves, and therefore contains vital information about the S-wave velocity structure, allowing polarization or dispersion curves to be obtained from single station or array noise recordings. At two sites in the area of Cologne, Germany, the extended spatial correlation method was applied to such recordings and apparent phase velocity curves in the frequency range of interest for earthquake engineering were obtained. Using this data, a linearized inversion, the simplex downhill method, and a genetic algorithm yielded similar S-wave profiles. However, the latter method is recommended since it is less dependent upon a good starting model. Importantly, the presence of low-velocity layers in the Cologne area made it necessary to consider in the frequency range of interest higher modes in the inversion procedures. Finally, independent information on the total thickness of the sedimentary cover permitted the estimation of a 2D S-wave velocity profile crossing the Cologne area. Here, the H/V ratio inversion using 20 single-station noise recordings was used, with the results in good agreement with a geological profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ESAC:

extended spatial autocorrelation

FTAN:

frequency time analysis

GA:

genetic algorithm

H/V:

horizontal-to-vertical

LIN:

linearized inversion

LV:

low velocity

MASW:

multichannel analysis of surface waves

RMS:

root mean square

SASW:

spectral analysis of surface waves

SDM:

simplex downhill method

SPAC:

spatial autocorrelation method

SSR:

standard spectral ratios

SVD :

singular value decomposition

References

  • K. Aki (1957) ArticleTitleSpace and time spectra of stationary stochastic waves, with special reference to microtremors Bulletin of the Earthquake Research Institute. 35 415–456

    Google Scholar 

  • K. Aki (1965) ArticleTitleA note on the use of microseisms in determining the shallow structure of the Earth’s crust Geophysics. 30 665–666 Occurrence Handle10.1190/1.1439640

    Article  Google Scholar 

  • Arai, H. and Tokimatsu, K. (2000) Effects of Rayleigh and Love waves on microtremor H/V spectra. Proceedings of the 12th World Conference On Earthquake Engineering 2232/4/A.

  • H. Breddin (1957) Hydrogeologisches Kartenwerk von Nordrhein-Westfalen, Blatt Frechen, 1:25,000 Ministerium für Ernährung Landwirtschaft u. Forsten des Landes Nordrhein-Westfalen, Germany

    Google Scholar 

  • H. Breddin (1959) Hydrogeologisches Kartenwerk von Nordrhein-Westfalen, Blatt Köln, 1:25,000 Ministerium für Ernährung Landwirtschaft u. Forsten des Landes Nordrhein-Westfalen, Germany

    Google Scholar 

  • M. Budny (1984) Seismische Bestimmung der bodendynamischen Kennwerte von oberflächennahen Schichten in Erdbebengebieten der Niederrheinischen Bucht und ihre ingenieurseismologische Anwendung University of Cologne Germany

    Google Scholar 

  • D. Fäh F. Kind D. Giardini (2001) ArticleTitleA theoretical investigation of average H/V ratios Geophysical Journal International. 145 535–549

    Google Scholar 

  • D. Fäh F. Kind D. Giardini (2003) ArticleTitleInversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects Journal of Seismology 7 449–467 Occurrence Handle10.1023/B:JOSE.0000005712.86058.42

    Article  Google Scholar 

  • D.E. Goldberg (1989) Genetic Algorithms in Search, Optimization and Machine Learning Addison-Wesley, Reading MA

    Google Scholar 

  • G. Grünthal D. Mayer-Rosa W.A. Lenhardt (1998) ArticleTitleAbschätzung der Erdbebengefährdung für die D-A-CH-Staaten-Deutschland, österreich, Schweiz Bautechnik 10 19–33

    Google Scholar 

  • D.G. Harkrider (1964) ArticleTitleSurface waves in multi-layered elastic media. I Rayleigh and Love waves from buried sources in a multilayered elastic half space Bulletin of the Seismological Society of America. 54 627–679

    Google Scholar 

  • Y. Hisada (1994) ArticleTitleAn efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths Bulletin of the Seismological Society of America. 84 1456–1472

    Google Scholar 

  • K.-G. Hinzen B. Weber F. Scherbaum (2004) ArticleTitleOn the resolution of H/V measurements to determine sediment thickness, a case study across a normal fault in the lower Rhine embayment, Germany Journal of Earthquake Engineering. 8 909–926 Occurrence Handle10.1142/S136324690400178X

    Article  Google Scholar 

  • M. Horike (1985) ArticleTitleInversion of phase velocity of long period microtremors to the S-wave-velocity structure down to the basement in urbanized areas Journal of Physics of the Earth. 33 59–96

    Google Scholar 

  • SE. Hough L. Seeber A. Rovelli L. Malagnini A. DeCesare G. Selvaggi A. Lerner-Lam (1992) ArticleTitleAmbient noise and weak motion excitation of sediment resonances: results from the Tiber Valley, Italy Bulletin of the Seismological Society of America. 82 1186–1205

    Google Scholar 

  • Karray, M. and Lefebvre, G. (2000) Identification and isolation of multiple modes in Rayleigh wave testing methods. ASCE Proceedings Use of Geophysical Methods in Construction, Geo Denver, pp. 80–94.

  • K. Konno T. Ohmachi (1998) ArticleTitleGround motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremors Bulletin of the Seismological Society of America. 88 228–241

    Google Scholar 

  • L. Malagnini A. Rovelli S.E. Hough L. Seeber (1993) ArticleTitleSite amplification estimates in the Garigliano Valley, Central Italy, based on dense array measurements of ambient noise Bulletin of the Seismological Society of America. 83 1744–1755

    Google Scholar 

  • W. Menke (1984) Geophysical Data Analysis: Discrete Inverse Theory Academic Press New York

    Google Scholar 

  • Y. Nakamura (1989) ArticleTitleA method for dynamic characteristics estimations of subsurface using microtremors on the ground surface Q. Rept. RTRI Jpn. 30 25–33

    Google Scholar 

  • J.A. Nelder R. Mead (1965) ArticleTitleA simplex method for function minimization Computer Journal. 7 308–313

    Google Scholar 

  • M. Ohori A. Nobata K. Wakamatsu (2002) ArticleTitleA comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor analysis Bulletin of the Seismological Society of America. 92 2323–2332 Occurrence Handle10.1785/0119980109

    Article  Google Scholar 

  • M. Ohrnberger F. Scherbaum F. Krüger R. Pelzing S.-K. Reamer (2004) ArticleTitleHow good are shear wave velocity models obtained from inversion of ambient vibrations in the Lower Rhine Embayment (N.W. Germany)? Bollettino di Geofisica Teorica ed Applicata. 45 215–232

    Google Scholar 

  • H. Okada (2003) The microtremor survey method Geophysical monograph series 12 American Geophysical Union Washington

    Google Scholar 

  • Park, C.B., Miller, R.D. and Xia, J. (1996) Multi-channel analysis of surface waves using vibroseis (MASW). Proceedings of the 66th Annal Meeting of the Society of Exploration Geophysicists, Expanded Abstracts, pp. 68–71.

  • S. Parolai P. Bormann C. Milkereit (2001) ArticleTitleAssessment of the natural frequency of the sedimentary cover in the Cologne area (Germany) using noise measurements Journal of Earthquake Engineering. 5 541–564 Occurrence Handle10.1142/S1363246901000558

    Article  Google Scholar 

  • S. Parolai P. Bormann C. Milkereit (2002) ArticleTitleNew relationships between Vs, thickness of the sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany) Bulletin of the Seismological Society of America. 92 2521–2527 Occurrence Handle10.1785/0120010248

    Article  Google Scholar 

  • S. Parolai S.M. Richwalski C. Milkereit P. Bormann (2004) ArticleTitleAssessment of the stability of H/V spectral ratios and comparison with earthquake data in the Cologne area (Germany) Tectonophysics 390 57–73 Occurrence Handle10.1016/j.tecto.2004.03.024

    Article  Google Scholar 

  • WH. Press SA. Teulkolsky WT. Vetterling BP. Flannery (1986) Numerical Recipes in Fortran 77, The Art of Scientific Computing University Press Cambridge

    Google Scholar 

  • F. Scherbaum K.-G. Hinzen M. Ohrnberger (2003) ArticleTitleDetermination of shallow shear wave velocity profiles in Cologne, Germany area using ambient vibrations Geophysical Journal International. 152 597–612 Occurrence Handle10.1046/j.1365-246X.2003.01856.x

    Article  Google Scholar 

  • K. Tokimatsu S. Kuwayama S. Tamura Y. Miyadera (1991) ArticleTitleVs determination from steady state Rayleigh wave method Soils and Foundations. 31 153–163

    Google Scholar 

  • K. Tokimatsu S. Tamura H. Kojima (1992) ArticleTitleEffects of multiple modes on Rayleigh wave dispersion characteristics Journal of Geotechnical Engineering. 118 1529–1543

    Google Scholar 

  • S. Tyagunov D. Hollnack F. Wenzel (2005) ArticleTitleEngineering-seismological analysis of site effects in the area of Cologne Natural Hazards. 38 IssueID1–2 201–216

    Google Scholar 

  • Van der Sluis, A. and Van der Vorst, H.A. (1987) Numerical solution of large sparse linear algebraic system arising from tomographic problems, in Seismic Tomography (ed.G. Nolet and D. Reidel), Norwell, MA. pp. 49–83.

  • H. Kamp ParticleVon (1986) Geologische Karte von Nordrhein-Westfalen 1:100,000 Geologisches Landesamt Nordrhein-Westfalen Germany

    Google Scholar 

  • R. Wang (1999) ArticleTitleA simple orthonormalization method for stable and efficient computation of Green’s functions Bulletin of the Seismological Society of America. 89 733–741

    Google Scholar 

  • P. Wessel WHF. Smith (1991) ArticleTitleFree software helps map and display data EOS 72 441 445–446

    Google Scholar 

  • J. Xia R.D. Miller C.B. Park (1999) ArticleTitleEstimation of near-surface shear wave velocity by inversion of Rayleigh waves Geophysics. 64 733–741 Occurrence Handle10.1190/1.1444578

    Article  Google Scholar 

  • H. Yamanaka H. Ishida (1996) ArticleTitleApplication of Generic algorithms to an inversion of surface-wave dispersion data Bulletin of the Seismological Society of America. 86 436–444

    Google Scholar 

  • S.X. Zhang L.S. Chan (2003) ArticleTitlePossible effects of misidentified mode number on Rayleigh wave inversion Journal of Applied Geophysics. 53 17–29 Occurrence Handle10.1016/S0926-9851(03)00014-4

    Article  Google Scholar 

  • S.H. Zhang L.S. Chan J. Xia (2004) ArticleTitleThe selection of field acquisition parameters for dispersion images from multichannel surface wave data Pure and Applied Geophysics. 16 185–2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Parolai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parolai, S., Richwalski, S.M., Milkereit, C. et al. S-wave Velocity Profiles for Earthquake Engineering Purposes for the Cologne Area (Germany). Bull Earthquake Eng 4, 65–94 (2006). https://doi.org/10.1007/s10518-005-5758-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-005-5758-2

Keywords

Navigation