Skip to main content
Log in

Comparative Molecular and Biological Characteristic of the Systemic Inflammatory Response in Adult and Old Male Wistar Rats with Different Resistance to Hypoxia

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Morphological, molecular, and biological features of the systemic inflammatory response induced by LPS administration were assessed in adult and old male Wistar rats with high and low resistance to hypoxia. In 6 h after LPS administration, mRNA expression levels of Hif1a, Vegf, Nfkb, and level of IL-1β protein in old rats were higher than in adult rats regardless of hypoxia tolerance. The morphometric study showed that the number of neutrophils in the interalveolar septa of the lungs was significantly higher in low-resistant adult and old rats 6 h after LPS administration. Thus, in old male Wistar rats, systemic inflammatory response is more pronounced than in adult rats and depends on the initial tolerance to hypoxia, which should be considered when developing new approaches to the therapy of systemic inflammatory response in individuals of different ages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399-408. https://doi.org/10.1016/j.cell.2012.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burtscher M, Mairer K, Wille M, Gatterer H, Ruedl G, Faulhaber M, Sumann G. Short-term exposure to hypoxia for work and leisure activities in health and disease: which level of hypoxia is safe? Sleep Breath. 2012;16(2):435-442. https://doi.org/10.1007/s11325-011-0521-1

    Article  PubMed  Google Scholar 

  3. Shustov EB, Karkischenko NN, Dulya MS, Semenov KhKh, Okovitiy SV, Radko SV. The expression of hypoxia-inducible factor HIF1α as a criterion for the development of tissue hypoxia. Biomeditsina. 2015;(4):4-15. Russian.

  4. Kirova YI, Germanova EL, Lukyanova LD. Phenotypic features of the dynamics of HIF-1α levels in rat neocortex in different hypoxia regimens. Bull. Exp. Biol. Med. 2013;154(6):718-722. https://doi.org/10.1007/s10517-013-2038-z

    Article  CAS  PubMed  Google Scholar 

  5. Dzhalilova DS, Kosyreva AM, Diatroptov ME, Ponomarenko EA, Tsvetkov IS, Zolotova NA, Mkhitarov VA, Khochanskiy DN, Makarova OV. Dependence of the severity of the systemic inflammatory response on resistance to hypoxia in male Wistar rats. J. Inflamm. Res. 2019;12:73-86. https://doi.org/10.2147/JIR.S194581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taylor CT, Colgan SP. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat. Rev. Immunol. 2017;17(12):774-785. https://doi.org/10.1038/nri.2017.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Danese S, Levesque BG, Feagan BG, Jucov A, Bhandari BR, Pai RK, Taylor Meadows K, Kirby BJ, Bruey JM, Olson A, Osterhout R, Van Biene C, Ford J, Aranda R, Raghupathi K, Sandborn WJ. Randomised clinical trial: a phase 1b study of GB004, an oral HIF-1α stabiliser, for treatment of ulcerative colitis. Aliment. Pharmacol. Ther. 2022;55(4):401-411. https://doi.org/10.1111/apt.16753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Textoris J, Beaufils N, Quintana G, Ben Lassoued A, Zieleskiewicz L, Wiramus S, Blasco V, Lesavre N, Martin C, Gabert J, Leone M. Hypoxia-inducible factor (HIF1α) gene expression in human shock states. Crit. Care. 2012;16(4):R120. https://doi.org/10.1186/cc11414

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sun HD, Liu YJ, Chen J, Chen MY, Ouyang B, Guan XD. The pivotal role of HIF-1α in lung inflammatory injury induced by septic mesenteric lymph. Biomed. Pharmacother. 2017;91:476-484. https://doi.org/10.1016/j.biopha.2017.04.103

    Article  CAS  PubMed  Google Scholar 

  10. Ferreira BL, Leite GGF, Brunialti MKC, Assuncao M, Azevedo LCP, Freitas F, Salomao R. HIF-1α and hypoxia responsive genes are differentially expressed in leukocytes from survivors and non-survivors patients during clinical sepsis. Shock. 2021;56(1):80-91. https://doi.org/10.1097/SHK.0000000000001694

    Article  CAS  PubMed  Google Scholar 

  11. Ruan H, Li YZ, Zhang Q, Wang BR, Wu R, Li SS, Ran X. Identification and clinical validation of Hypoxia-Inducible Factor 1α protein as the potential biomarker in patients with sepsis. Shock. 2023;59(6):855-863. https://doi.org/10.1097/SHK.0000000000002122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He Y, Munday JS, Perrott M, Wang G, Liu X. Association of age with the expression of hypoxia-inducible factors HIF-1α, HIF-2α, HIF-3α and VEGF in lung and heart of Tibetan sheep. Animals (Basel). 2019;9(9):673. https://doi.org/10.3390/ani9090673

    Article  PubMed  PubMed Central  Google Scholar 

  13. Duan D, Yu S, Cui Y. Morphological study of the sinus node and its artery in yak. Anat. Rec. (Hoboken). 2012;295(12):2045-2056. https://doi.org/10.1002/ar.22591

    Article  CAS  PubMed  Google Scholar 

  14. Zhou J, Yu S, He J, Cui Y. Segmentation features and structural organization of the intrapulmonary artery of the yak. Anat. Rec. (Hoboken). 2013;296(11):1775-1788. https://doi.org/10.1002/ar.22790

    Article  PubMed  Google Scholar 

  15. He Y, Yu S, Hu J, Cui Y, Liu P. Changes in the anatomic and microscopic structure and the expression of HIF-1α and VEGF of the yak heart with aging and hypoxia. PLoS One. 2016;11(2):e0149947. https://doi.org/10.1371/journal.pone.0149947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kabay B, Kocaefe C, Baykal A, Ozden H, Baycu C, Oner Z, Ozgüç M, Sayek I. Interleukin-10 gene transfer: prevention of multiple organ injury in a murine cecal ligation and puncture model of sepsis. World J. Surg. 2007;31(1):105-115. https://doi.org/10.1007/s00268-006-0066-9

    Article  PubMed  Google Scholar 

  17. Stehr SN, Knels L, Weissflog C, Schober J, Haufe D, Lupp A, Koch T, Heller AR. Effects of IGM-enriched solution on polymorphonuclear neutrophil function, bacterial clearance, and lung histology in endotoxemia. Shock. 2008;29(2):167-172. https://doi.org/10.1097/SHK.0b013e318067df15

    Article  PubMed  Google Scholar 

  18. Kruger P, Saffarzadeh M, Weber AN, Rieber N, Radsak M, von Bernuth H, Benarafa C, Roos D, Skokowa J, Hartl D. Neutrophils: Between host defence, immune modulation, and tissue injury. PLoS Pathog. 2015;11(3):e1004651. https://doi.org/10.1371/journal.ppat.1004651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dzhalilova DSh, Silina MV, Kosyreva AM, Tsvetkov IS, Makarova OV. Morphological and molecular biological features of the systemic inflammatory response in old Wistar rats with high and low resistance to hypoxia. Bull. Exp. Biol. Med. 2023;175(5):704-710. https://doi.org/10.1007/s10517-023-05930-y

    Article  CAS  PubMed  Google Scholar 

  20. Jain K, Suryakumar G, Prasad R, Ganju L. Differential activation of myocardial ER stress response: a possible role in hypoxic tolerance. Int. J. Cardiol. 2013;168(5):4667-4677. https://doi.org/10.1016/j.ijcard.2013.07.180

    Article  PubMed  Google Scholar 

  21. Kosyreva AM, Makarova OV, Kakturskiy LV, Mikhailova LP, Boltovskaya MN, Rogov KA. Sex differences of inflammation in target organs, induced by intraperitoneal injection of lipopolysaccharide, depend on its dose. J. Inflamm. Res. 2018;11:431-445. https://doi.org/10.2147/JIR.S178288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kosyreva AM, Dzhalilova DS, Tsvetkov IS, Diatroptov ME, Makarova OV. Age-specific features of hypoxia tolerance and intensity of lipopolysaccharide-induced systemic inflammatory response in Wistar rats. Bull. Exp. Biol. Med. 2019;166(5):699-703. https://doi.org/10.1007/s10517-019-04421-3

    Article  CAS  PubMed  Google Scholar 

  23. Kang MJ, Kim HJ, Kim HK, Lee JY, Kim DH, Jung KJ, Kim KW, Baik HS, Yoo MA, Yu BP, Chung HY. The effect of age and calorie restriction on HIF-1-responsive genes in aged liver. Biogerontology. 2005;6(1):27-37. https://doi.org/10.1007/s10522-004-7381-z

    Article  CAS  PubMed  Google Scholar 

  24. Ndubuizu OI, Chavez JC, LaManna JC. Increased prolyl 4-hydroxylase expression and differential regulation of hypoxia-inducible factors in the aged rat brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;297(1):R158-R165. https://doi.org/10.1152/ajpregu.90829.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 2000;275(33):25 130-25 138. https://doi.org/10.1074/jbc.M001914200

  26. Sumbayev VV, Yasinska IM. Mechanisms of hypoxic signal transduction regulated by reactive nitrogen species. Scand. J. Immunol. 2007;65(5):399-406. https://doi.org/10.1111/j.1365-3083.2007.01919.x

    Article  CAS  PubMed  Google Scholar 

  27. Frede S, Stockmann C, Freitag P, Fandrey J. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. Biochem. J. 2006;396(3):517-527. https://doi.org/10.1042/BJ20051839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oliver KM, Garvey JF, Ng CT, Veale DJ, Fearon U, Cummins EP, Taylor CT. Hypoxia activates NF-kappaB-dependent gene expression through the canonical signaling pathway. Antioxid. Redox Signal. 2009;11(9):2057-2064. https://doi.org/10.1089/ars.2008.2400

    Article  CAS  PubMed  Google Scholar 

  29. Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, Godson C, Nielsen JE, Moynagh P, Pouyssegur J, Taylor CT. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc. Natl Acad. Sci. USA. 2006;103(48):18 154-18 159. https://doi.org/10.1073/pnas.0602235103

  30. Pomatto LCD, Davies KJA. Adaptive homeostasis and the free radical theory of ageing. Free Radic. Biol. Med. 2018;124:420-430. https://doi.org/10.1016/j.freeradbiomed.2018.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Korbecki J, Simińska D, Gąssowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Chronic and cycling hypoxia: drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: a review of the molecular mechanisms. Int. J. Mol. Sci. 2021;22(19):10701. https://doi.org/10.3390/ijms221910701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pham K, Parikh K, Heinrich EC. Hypoxia and inflammation: insights from high-altitude physiology. Front. Physiol. 2021;12:676782. https://doi.org/10.3389/fphys.2021.676782

    Article  PubMed  PubMed Central  Google Scholar 

  33. El Awad B, Kreft B, Wolber EM, Hellwig-Bürgel T, Metzen E, Fandrey J, Jelkmann W. Hypoxia and interleukin-1beta stimulate vascular endothelial growth factor production in human proximal tubular cells. Kidney Int. 2000;58(1):43-50. https://doi.org/10.1046/j.1523-1755.2000.00139.x

    Article  PubMed  Google Scholar 

  34. Li H, Ren M, He Q, Gao J, Li Q. Revealing the longevity code of humans with up to extreme longevity in guangxi based on physical examination indicators and personalized biomarkers of aging. Biomed. Res. Int. 2022;2022:2810379. https://doi.org/10.1155/2022/2810379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peng X, Zhou X, Yin Y, Luo B, Liu Y, Yang C. Inflammatory microenvironment accelerates bone marrow mesenchymal stem cell aging. Front. Bioeng. Biotechnol. 2022;10:870324. https://doi.org/10.3389/fbioe.2022.870324

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kosyreva AM, Sentyabreva AV, Tsvetkov IS, Makarova OV. Alzheimer’s disease and inflammaging. Brain Sci. 2022;12(9):1237. https://doi.org/10.3390/brainsci12091237

    Article  CAS  PubMed  Google Scholar 

  37. Kruger P, Saffarzadeh M, Weber AN, Rieber N, Radsak M, von Bernuth H, Benarafa C, Roos D, Skokowa J, Hartl D. Neutrophils: Between host defence, immune modulation, and tissue injury. PLoS Pathog. 2015;11(3):e1004651. https://doi.org/10.1371/journal.ppat.1004651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sh. Dzhalilova.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 257-264, December, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhalilova, D.S., Silina, M.V., Kosyreva, A.M. et al. Comparative Molecular and Biological Characteristic of the Systemic Inflammatory Response in Adult and Old Male Wistar Rats with Different Resistance to Hypoxia. Bull Exp Biol Med 176, 680–686 (2024). https://doi.org/10.1007/s10517-024-06090-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-024-06090-3

Keywords

Navigation