Skip to main content
Log in

Selective Accumulation of Poly(Lactic-Co-Glycolic Acid) Nanoparticles in Endotheliocytes and Mesenchymal Stromal Cells Cultured as Mixed-Cell Spheroids

  • CELL TECHNOLOGIES IN BIOLOGY AND MEDICINE
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The use of drug-loaded nanoparticles is an actively developed approach in targeted cancer therapy. Prevascularized spheroids generated from mesenchymal stem cells and endotheliocytes are considered as a model to evaluate the tropism of therapeutic nanoparticles to a specific tissue. Nanoparticles based on co-polymer of lactic and glycolic acids (poly(lactic-co-glycolic acid; PLGA) labeled with cyanine dye (Cy5) were incubated with prevascularized spheroids, and the rate of their penetration and their distribution in the spheroid-forming cells were evaluated. Endotheliocytes more intensively accumulated nanoparticles than mesenchymal stem cells: the number of nanoparticles in mixed-cell spheroids of mesenchymal stem cells and endotheliocytes was greater than in spheroids built solely of mesenchymal stem cells by 5±1.2 times. The developed 3D in vitro cell model provides a low-cost way to assess tissue tropism of therapeutic nanoparticles under conditions closer to natural in comparison with 2D culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siddique S, Chow JCL. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials (Basel). 2020;10(9):1700. doi: https://doi.org/10.3390/nano10091700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang Z, Wang D, Zhang C, Liu H, Hao M, Kan S, Liu D, Liu W. The Applications of gold nanoparticles in the diagnosis and treatment of gastrointestinal cancer. Front. Oncol. 2022;11:819329. doi: https://doi.org/10.3389/fonc.2021.819329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garizo AR, Castro F, Martins C, Almeida A, Dias TP, Fernardes F, Barrias CC, Bernardes N, Fialho AM, Sarmento B. p28-functionalized PLGA nanoparticles loaded with gefitinib reduce tumor burden and metastases formation on lung cancer. J. Control. Release. 2021;337:329-342. doi: https://doi.org/10.1016/j.jconrel.2021.07.035

    Article  CAS  PubMed  Google Scholar 

  4. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020;7:193. doi: https://doi.org/10.3389/fmolb.2020.00193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taléns-Visconti R, Díez-Sales O, de Julián-Ortiz JV, Nácher A. Nanoliposomes in cancer therapy: marketed products and current clinical trials. Int. J. Mol. Sci. 2022;23(8):4249. doi: https://doi.org/10.3390/ijms23084249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin W, Zhang J, Xu JF, Pi J. The advancing of selenium nanoparticles against infectious diseases. Front. Pharmacol. 2021;12:682284. doi: https://doi.org/10.3389/fphar.2021.682284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sarkar J, Das S, Aich S, Bhattacharyya P, Acharya K. Antiviral potential of nanoparticles for the treatment of Coronavirus infections. J. Trace Elem. Med. Biol. 2022;72:126977. doi: https://doi.org/10.1016/j.jtemb.2022.126977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sharmin S, Rahaman MM, Sarkar C, Atolani O, Islam MT, Adeyemi OS. Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon. 2021;7(3):e06456. doi: https://doi.org/10.1016/j.heliyon.2021.e06456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Waris A, Ali A, Khan AU, Asim M, Zamel D, Fatima K, Raziq A, Khan MA, Akbar N, Baset A, Abourehab MAS. Applications of various types of nanomaterials for the treatment of neurological disorders. Nanomaterials (Basel). 2022;12(13):2140. doi: https://doi.org/10.3390/nano12132140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J. Nanobiotechnology. 2022;20(1):262. doi: https://doi.org/10.1186/s12951-022-01477-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tchoryk A, Taresco V, Argent RH, Ashford M, Gellert PR, Stolnik S, Grabowska A, Garnett MC. Penetration and uptake of nanoparticles in 3D tumor spheroids. Bioconjug. Chem. 2019;30(5):1371-1384. doi: https://doi.org/10.1021/acs.bioconjchem.9b00136

    Article  CAS  PubMed  Google Scholar 

  12. Ho DN, Kohler N, Sigdel A, Kalluri R, Morgan JR, Xu C, Sun S. Penetration of endothelial cell coated multicellular tumor spheroids by iron oxide nanoparticles. Theranostics. 2012;2(1):66-75. doi: https://doi.org/10.7150/thno.3568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Malinovskaya J, Salami R, Valikhov M, Vadekhina V, Semyonkin A, Semkina A, Abakumov M, Harel Y, Levy E, Levin T, Persky R, Chekhonin V, Lellouche JP, Melnikov P, Gelperina S. Supermagnetic Human Serum Albumin (HSA) nanoparticles and PLGA-based Doxorubicin nanoformulation: a duet for selective nanotherapy. Int. J. Mol. Sci. 2022;24(1):627. doi: https://doi.org/10.3390/ijms24010627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumskova N, Ermolenko Y, Osipova N, Semyonkin A, Kildeeva N, Gorshkova M, Kovalskii A, Kovshova T, Tarasov V, Kreuter J, Maksimenko O, Gelperina S. How subtle differences in polymer molecular weight affect doxorubicin-loaded PLGA nanoparticles degradation and drug release. J. Microencapsul. 2020;37(3):283-295. doi: https://doi.org/10.1080/02652048.2020.1729885

    Article  CAS  PubMed  Google Scholar 

  15. Huang HJ, Lee YH, Hsu YH, Liao CT, Lin YF, Chiu HW. Current strategies in assessment of nanotoxicity: alternatives to in vivo animal testing. Int. J. Mol. Sci. 2021;22(8):4216. doi: https://doi.org/10.3390/ijms22084216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vakhrushev IV, Nezhurina EK, Karalkin PA, Tsvetkova AV, Sergeeva NS, Majouga AG, Yarygin KN. Heterotypic multicellular spheroids as experimental and preclinical models of sprouting angiogenesis. Biology (Basel). 2021;11(1):18. doi: https://doi.org/10.3390/biology11010018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 155-160, September, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, G.E., Vakhrushev, I.V., Novikova, V.D. et al. Selective Accumulation of Poly(Lactic-Co-Glycolic Acid) Nanoparticles in Endotheliocytes and Mesenchymal Stromal Cells Cultured as Mixed-Cell Spheroids. Bull Exp Biol Med 176, 241–245 (2023). https://doi.org/10.1007/s10517-024-06003-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-024-06003-4

Keywords

Navigation