Skip to main content
Log in

Interaction of Graphene Oxide Nanoparticles with Human Mononuclear Cells in the Cell-IQ System

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The interaction of graphene oxide nanoparticles with human peripheral blood mononuclear cells was studied using the Cell-IQ continuous monitoring system for living cells. We used graphene oxide nanoparticles of various sizes coated with linear or branched polyethylene glycol (PEG) in concentrations of 5 and 25 μg/ml. After 24-h incubation with graphene oxide nanoparticles, the increase in the number of peripheral blood mononuclear cells at visualization points decreased; nanoparticles coated with branched PEG more markedly suppressed cell growth in culture. In the presence of graphene oxide nanoparticles, peripheral blood mononuclear cells retained high viability in culture after daily monitoring in the Cell-IQ system. The studied nanoparticles were engulfed by monocytes and the type of PEGylation had no effect on this process. Thus, graphene oxide nanoparticles reduced the increase in peripheral blood mononuclear cell mass during dynamic observation in the Cell-IQ system without reducing their viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dasari Shareena TP, McShan D, Dasmahapatra AK, Tchounwou PB. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nanomicro Lett. 2018;10(3):53. https://doi.org/10.1007/s40820-018-0206-4

    Article  CAS  Google Scholar 

  2. Raslan A, Saenz Del Burgo L, Ciriza J, Pedraz JL. Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int. J. Pharm. 2020;580:119226. https://doi.org/10.1016/j.ijpharm.2020.119226

  3. Makharza S, Cirillo G, Bachmatiuk A, Ibrahim I, Ioannides N, Trzebicka B, Hampel S, Rümmeli MH. Graphene oxide-based drug delivery vehicles: functionalization, characterization, and cytotoxicity evaluation. J. Nanopart. Res. 2013;15(12):2099. https://doi.org/10.1007/s11051-013-2099-y

    Article  CAS  Google Scholar 

  4. Park MVDZ, Bleeker EAJ, Brand W, Cassee FR, van Elk M, Gosens I, de Jong WH, Meesters JAJ, Peijnenburg WJGM, Quik JTK, Vandebriel RJ, Sips AJAM. Considerations for safe innovation: the case of graphene. ACS Nano. 2017;11(10):9574-9593. https://doi.org/10.1021/acsnano.7b04120

    Article  CAS  PubMed  Google Scholar 

  5. Ou L, Lin S, Song B, Liu J, Lai R, Shao L. The mechanisms of graphene-based materials-induced programmed cell death: a review of apoptosis, autophagy, and programmed necrosis. Int. J. Nanomedicine. 2017;12:6633-6646. https://doi.org/10.2147/IJN.S140526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Melo-Diogo D, Lima-Sousa R, Alves CG, Costa EC, Louro RO, Correia IJ. Functionalization of graphene family nanomaterials for application in cancer therapy. Colloids Surf. B Biointerfaces. 2018;171:260-275. https://doi.org/10.1016/j.colsurfb.2018.07.030

    Article  CAS  PubMed  Google Scholar 

  7. Cao W, He L, Cao W, Huang X, Jia K, Dai J. Recent progress of graphene oxide as a potential vaccine carrier and adjuvant. Acta Biomater. 2020;112:14-28. https://doi.org/10.1016/j.actbio.2020.06.009

    Article  CAS  PubMed  Google Scholar 

  8. Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008;130(33):10876-10877. https://doi.org/10.1021/ja803688x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao R, Lv M, Li Y, Sun M, Kong W, Wang L, Song S, Fan C, Jia L, Qiu S, Sun Y, Song H, Hao R. Stable nanocomposite based on PEGylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Appl. Mater. Interfaces. 2017;9(18):15328-15341. https://doi.org/10.1021/acsami.7b03987

    Article  CAS  PubMed  Google Scholar 

  10. Dudek I, Skoda M, Jarosz A, Szukiewicz D. The molecular influence of graphene and graphene oxide on the immune system under in vitro and in vivo conditions. Arch. Immunol. Ther. Exp. (Warsz). 2016;64(3):195-215. https://doi.org/10.1007/s00005-015-0369-3

    Article  CAS  PubMed  Google Scholar 

  11. Feito MJ, Vila M, Matesanz MC, Linares J, Gonçalves G, Marques PA, Vallet-Regí M, Rojo JM, Portolés MT. In vitro evaluation of graphene oxide nanosheets on immune function. J. Colloid Interface Sci. 2014;432:221-228. https://doi.org/10.1016/j.jcis.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  12. Zare P, Aleemardani M, Seifalian A, Bagher Z, Seifalian AM. Graphene oxide: opportunities and challenges in biomedicine. Nanomaterials (Basel). 2021;11(5):1083. https://doi.org/10.3390/nano11051083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khramtsov P, Bochkova M, Timganova V, Nechaev A, Uzhviyuk S, Shardina K, Maslennikova I, Rayev M, Zamorina S. Interaction of graphene oxide modified with linear and branched PEG with monocytes isolated from human blood. Nanomaterials (Basel). 2021;12(1):126. https://doi.org/10.3390/nano12010126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mendes RG, Koch B, Bachmatiuk A, Ma X, Sanchez S, Damm C, Schmidt OG, Gemming T, Eckert J, Rümmeli MH. A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J. Mater. Chem. B. 2015;3(12):2522-2529. https://doi.org/10.1039/c5tb00180c

    Article  CAS  PubMed  Google Scholar 

  15. Santos JL, Montes MJ, Gutiérrez F, Ruiz C. Evaluation of phagocytic capacity with a modified flow cytometry technique. Immunol. Lett. 1995;45(1-2):1-4. https://doi.org/10.1016/0165-2478(94)00180-y

    Article  CAS  PubMed  Google Scholar 

  16. Singh SK, Singh MK, Nayak MK, Kumari S, Grácio JJ, Dash D. Characterization of graphene oxide by flow cytometry and assessment of its cellular toxicity. J. Biomed. Nanotechnol. 2011;7(1):30-31. https://doi.org/10.1166/jbn.2011.1186

    Article  CAS  PubMed  Google Scholar 

  17. Orecchioni M, Bedognetti D, Newman L, Fuoco C, Spada F, Hendrickx W, Marincola FM, Sgarrella F, Rodrigues A.F, Ménard-Moyon C, Cesareni G, Kostarelos K, Bianco A, Delogu LG. Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells. Nat. Commun. 2017;8(1):1109. https://doi.org/10.1038/s41467-017-01015-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mendes RG, Mandarino A, Koch B, Meyer AK, Bachmatiuk A, Hirsch C, Gemming T, Schmidt OG, Liu Z, Rümmeli MH. Size and time dependent internalization of label-free nano-graphene oxide in human macrophages. Nano Res. 2017;10(6):1980-1995. https://doi.org/10.1007/s12274-016-1385-2

    Article  CAS  Google Scholar 

  19. Yan J, Chen L, Huang CC, Lung SC, Yang L, Wang WC, Lin PH, Suo G, Lin CH. Consecutive evaluation of graphene oxide and reduced graphene oxide nanoplatelets immunotoxicity on monocytes. Colloids Surf. B Biointerfaces. 2017;153:300-309. https://doi.org/10.1016/j.colsurfb.2017.02.036

    Article  CAS  PubMed  Google Scholar 

  20. Uzhviyuk SV, Bochkova MS, Timganova VP, Khramtsov PV, Shardina KY, Kropaneva MD, Nechaev AI, Raev MB, Zamorina SA. Interaction of Human Dendritic Cells with Graphene Oxide Nanoparticles In Vitro. Bull. Exp. Biol. Med. 2022;172(5):664-670. https://doi.org/10.1007/s10517-022-05451-0

    Article  CAS  PubMed  Google Scholar 

  21. Zamorina SA, Khramtsov PV, Rayev MB, Timganova VP, Bochkova MS, Nechaev AI, Shunkin EO, Khaziakhmatova OG, Malaschenko VV, Litvinova LS. Graphene Oxide Nanoparticels Interaction with Jurkat Cell Line in Cell-IQ System. Dokl. Biochem. Biophys. 2021;501(1):438-443. https://doi.org/10.1134/S1607672921060089

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Uzhviyuk.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 1, pp. 62-68, March, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzhviyuk, S.V., Khramtsov, P.V., Raev, M.B. et al. Interaction of Graphene Oxide Nanoparticles with Human Mononuclear Cells in the Cell-IQ System. Bull Exp Biol Med 175, 172–178 (2023). https://doi.org/10.1007/s10517-023-05830-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-023-05830-1

Keywords

Navigation