Skip to main content

Advertisement

Log in

Development of a Cell Line Containing the Chimeric ETV6-NTRK3 Gene. The Search for Mutations of the Tyrosine Kinase Chimeric Domain That Cause Resistance to Larotrectinib

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The development, registration, and further use of entrectinib and larotrectinib for the treatment of tumors resulting from oncogenic stimulation of chimeric neurotrophin receptors (TRK) attracted much interest to the mechanisms of tumor cells resistance to TRK inhibitors during treatment. In the presented study, a cell line carrying the chimeric gene ETV6-NTRK3 (HFF-EN) was created on the basis of human fibroblasts. The transcription level of the chimeric ETV6-NTRK3 gene in HFF-EN was comparable to the transcription level of the household ACTB gene, the expression of the ETV6-NTRKA protein was confirmed by immunoblotting. A comparison of the dose—effect curves of fibroblasts and HFF-EN cells showed a ~38-fold increase in the sensitivity of HFF-EN to larotrectinib. To obtain a cell model of the resistance to larotrectinib in NTRK-dependent cancer, we used cell passages with a gradually increasing concentration of larotrectinib and obtained six resistant clones. p.G623E c.1868G>A mutation was found in five clones, and p.R582W c.1744C>T mutation, previously not described as a resistance mutation, was found in one clone showing significantly less resistance. These results can be further used for more complete understanding of the mechanisms of the resistance to TRK inhibitors and for the development of new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pulciani S, Santos E, Lauver AV, Long LK, Aaronson SA, Barbacid M. Oncogenes in solid human tumours. Nature. 1982;300:539-542. https://doi.org/10.1038/300539a0

    Article  CAS  PubMed  Google Scholar 

  2. Amatu A, Sartore-Bianchi A, Bencardino K, Pizzutilo EG, Tosi F, Siena S. Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer. Ann. Oncol. 2019;30(Suppl_8):viii5-viii15. https://doi.org/10.1093/annonc/mdz383

  3. Hsiao SJ, Zehir A, Sireci AN, Aisner DL. Detection of tumor NTRK gene fusions to identify patients who may benefit from tyrosine kinase (TRK) inhibitor therapy. J. Mol. Diagn. 2019;21(4):553-571. https://doi.org/10.1016/j.jmoldx.2019.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 2018;15(12):731-747. https://doi.org/10.1038/s41571-018-0113-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gatalica Z, Xiu J, Swensen J, Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod. Pathol. 2019;32(1):147-153. https://doi.org/10.1038/s41379-018-0118-3

    Article  CAS  PubMed  Google Scholar 

  6. Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF, Blakely CM, Seto T, Cho BC, Tosi D, Besse B, Chawla SP, Bazhenova L, Krauss JC, Chae YK, Barve M, Garrido-Laguna I, Liu SV, Conkling P, John T, Fakih M, Sigal D, Loong HH, Buchschacher GL Jr, Garrido P, Nieva J, Steuer C, Overbeck TR, Bowles DW, Fox E, Riehl T, Chow-Maneval E, Simmons B, Cui N, Johnson A, Eng S, Wilson TR, Demetri GD; trial investigators. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020;21(2):271-282. https://doi.org/10.1016/S1470-2045(19)30691-6

  7. Hong DS, DuBois SG, Kummar S, Farago AF, Albert CM, Rohrberg KS, van Tilburg CM, Nagasubramanian R, Berlin JD, Federman N, Mascarenhas L, Geoerger B, Dowlati A, Pappo AS, Bielack S, Doz F, McDermott R, Patel JD, Schilder RJ, Tahara M, Pfister SM, Witt O, Ladanyi M, Rudzinski ER, Nanda S, Childs BH, Laetsch TW, Hyman DM, Drilon A. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020;21(4):531-540. https://doi.org/10.1016/S1470-2045(19)30856-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Drilon A, Nagasubramanian R, Blake JF, Ku N, Tuch BB, Ebata K, Smith S, Lauriault V, Kolakowski GR, Brandhuber BJ, Larsen PD, Bouhana KS, Winski SL, Hamor R, Wu WI, Parker A, Morales TH, Sullivan FX, DeWolf WE, Wollenberg LA, Gordon PR, Douglas-Lindsay DN, Scaltriti M, Benayed R, Raj S, Hanusch B, Schram AM, Jonsson P, Berger MF, Hechtman JF, Taylor BS, Andrews S, Rothenberg SM, Hyman DM. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov. 2017;7(9):963-972. https://doi.org/10.1158/2159-8290.CD-17-0507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Awad MM, Katayama R, McTigue M, Liu W, Deng YL, Brooun A, Friboulet L, Huang D, Falk MD, Timofeevski S, Wilner KD, Lockerman EL, Khan TM, Mahmood S, Gainor JF, Digumarthy SR, Stone JR, Mino-Kenudson M, Christensen JG, Iafrate AJ, Engelman JA, Shaw AT. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N. Engl. J. Med. 2013;368(25):2395-2401. https://doi.org/10.1056/NEJMoa1215530

    Article  CAS  PubMed  Google Scholar 

  10. Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, Katayama R, Dagogo-Jack I, Gadgeel S, Schultz K, Singh M, Chin E, Parks M, Lee D, DiCecca RH, Lockerman E, Huynh T, Logan J, Ritterhouse LL, Le LP, Muniappan A, Digumarthy S, Channick C, Keyes C, Getz G, Dias-Santagata D, Heist RS, Lennerz J, Sequist LV, Benes CH, Iafrate AJ, Mino-Kenudson M, Engelman JA, Shaw AT. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 2016;6(10):1118-1133. https://doi.org/10.1158/2159-8290.CD-16-0596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cocco E, Schram AM, Kulick A, Misale S, Won HH, Yaeger R, Razavi P, Ptashkin R, Hechtman JF, Toska E, Cownie J, Somwar R, Shifman S, Mattar M, Selçuklu SD, Samoila A, Guzman S, Tuch BB, Ebata K, de Stanchina E, Nagy RJ, Lanman RB, Houck-Loomis B, Patel JA, Berger MF, Ladanyi M, Hyman DM, Drilon A, Scaltriti M. Resistance to TRK inhibition mediated by convergent MAPK pathway activation. Nat. Med. 2019;25(9):1422-1427. https://doi.org/10.1038/s41591-019-0542-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harada G, Drilon A. TRK inhibitor activity and resistance in TRK fusion-positive cancers in adults. Cancer Genet. 2022;264-265:33-39. https://doi.org/10.1016/j.cancergen.2022.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Drilon A, Ou SI, Cho BC, Kim DW, Lee J, Lin JJ, Zhu VW, Ahn MJ, Camidge DR, Nguyen J, Zhai D, Deng W, Huang Z, Rogers E, Liu J, Whitten J, Lim JK, Stopatschinskaja S, Hyman DM, Doebele RC, Cui JJ, Shaw AT. Repotrectinib (TPX-0005) is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent — front mutations. Cancer Discov. 2018;8(10):1227-1236. https://doi.org/10.1158/2159-8290.CD-18-0484

    Article  CAS  PubMed  Google Scholar 

  14. Panciera T, Azzolin L, Fujimura A, Di Biagio D, Frasson C, Bresolin S, Soligo S, Basso G, Bicciato S, Rosato A, Cordenonsi M, Piccolo S. Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ. Cell Stem Cell. 2016;19(6):725-737. https://doi.org/10.1016/j.stem.2016.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keddy C, Neff T, Huan J, Nickerson JP, Beach CZ, Akkari Y, Ji J, Moore S, Nazemi KJ, Corless CL, Beadling C, Woltjer R, Cho YJ, Wood MD, Davare MA. Mechanisms of targeted therapy resistance in a pediatric glioma driven by ETV6-NTRK3 fusion. Cold Spring Harb Mol. Case Stud. 2021;7(5):a006109. https://doi.org/10.1101/mcs.a006109

  16. Wai DH, Knezevich SR, Lucas T, Jansen B, Kay RJ, Sorensen PH. The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene. 2000;19(7):906-915. https://doi.org/10.1038/sj.onc.1203396

    Article  CAS  PubMed  Google Scholar 

  17. Konicek BW, Capen AR, Credille KM, Ebert PJ, Falcon BL, Heady GL, Patel BKR, Peek VL, Stephens JR, Stewart JA, Stout SL, Timm DE, Um SL, Willard MD, Wulur IH, Zeng Y, Wang Y, Walgren RA, Betty Yan SC. Merestinib (LY2801653) inhibits neurotrophic receptor kinase (NTRK) and suppresses growth of NTRK fusion bearing tumors. Oncotarget. 2018;9(17):13796-13806. https://doi.org/10.18632/oncotarget.24488

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Filipenko.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 1, pp. 20-26, March, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyarskikh, U.A., Savostyanova, T.A., Oscorbin, I.P. et al. Development of a Cell Line Containing the Chimeric ETV6-NTRK3 Gene. The Search for Mutations of the Tyrosine Kinase Chimeric Domain That Cause Resistance to Larotrectinib. Bull Exp Biol Med 175, 132–137 (2023). https://doi.org/10.1007/s10517-023-05824-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-023-05824-z

Keywords

Navigation