Skip to main content

Advertisement

Log in

Application of Behavioral Tests for Evaluation of an Experimental Model of Alzheimer’s Disease in Female Rats

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Alzheimer’s disease was modeled in female Wistar rats aged 4 months by stereotaxic bilateral injection of a synthetic peptide β-amyloid (Aβ1-42) into the hippocampus. Behavioral tests (open field, Y-maze, passive avoidance, and Morris water maze) revealed significant impairment of memory and spatial navigation 8 weeks after β-amyloid administration. At this term, the cognitive impairments typical of Alzheimer’s disease are reproduced. The experimental model of Alzheimer’s disease proposed by us can be used in preclinical studies of drugs for the treatment of this pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solis E Jr, Hascup KN, Hascup ER. Alzheimer’s disease: The link between amyloid-β and neurovascular dysfunction. J. Alzheimers Dis. 2020;76(4):1179-1198. https://doi.org/10.3233/JAD-200473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Prince M, Albanese E, Guerchet M, Prina M. World Alzheimer Report 2014: Dementia and risk reduction an analysis of protective and modifiable factors. London: Alzheimer’s Disease International, 2014.

    Google Scholar 

  3. Barage SH, Sonawane KD. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides. 2015;52:1-18. https://doi.org/10.1016/j.npep.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  4. Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur. J. Neurol. 2018;25(1):59-70. https://doi.org/10.1111/ene.13439

    Article  CAS  PubMed  Google Scholar 

  5. Khan S, Barve KH, Kumar MS. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Curr. Neuropharmacol. 2020;18(11):1106-1125. https://doi.org/10.2174/1570159X18666200528142429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iptyshev AM, Gorina YaV, Lopatina OL, Komleva YuK, Salmina AB. Experimental models of Alzheimer’s disease: advantages and disadvantages. Sib. Med. Obozrenie. 2016;(4):5-21. Russian.

  7. Drummond E, Wisniewski T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 2017;133(2):155-175. https://doi.org/10.1007/s00401-016-1662-x

    Article  CAS  PubMed  Google Scholar 

  8. Baerends E, Soud K, Folke J, Pedersen AK, Henmar S, Konrad L, Lycas MD, Mori Y, Pakkenberg B, Woldbye DPD, Dmytriyeva O, Pankratova S. Modeling the early stages of Alzheimer’s disease by administering intracerebroventricular injections of human native Aβ oligomers to rats. Acta Neuropathol. Commun. 2022;10(1):113. https://doi.org/10.1186/s40478-022-01417-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Petrasek T, Skurlova M, Maleninska K, Vojtechova I, Kristofikova Z, Matuskova H, Sirova J, Vales K, Ripova D, Stuchlik A. A rat model of Alzheimer’s disease based on a beta42 and pro-oxidative substances exhibits cognitive deficit and alterations in glutamatergic and cholinergic neurotransmitter systems. Front. Aging Neurosci. 2016;8:83. https://doi.org/10.3389/fnagi.2016.00083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poon CH, Wang Y, Fung ML, Zhang C, Lim LW. Rodent models of amyloid-beta feature of Alzheimer’s disease: development and potential treatment implications. Aging Dis. 2020;11(5):1235-1259. https://doi.org/10.14336/AD.2019.1026

  11. Mamun AA, Hashimoto M, Katakura M, Matsuzaki K, Hossain S, Arai H, Shido O. Neuroprotective effect of madecassoside evaluated using amyloid Β1-42-mediated in vitro and in vivo Alzheimer’s disease models. Int. J. Indigenous Med. Plants 2014;47(2):1669-1682.

    Google Scholar 

  12. Facchinetti R, Bronzuoli MR, Scuderi C. An animal model of Alzheimer disease based on the intrahippocampal injection of amyloid β-peptide (1-42). Methods Mol. Biol. 2018;1727:343-352. https://doi.org/10.1007/978-1-4939-7571-6_25

    Article  CAS  PubMed  Google Scholar 

  13. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. San Diego, 1998.

  14. Morozova A, Zubkov E, Strekalova T, Kekelidze Z, Storozeva Z, Schroeter C.A, Bazhenova N, Lesch K.P, Cline B.H, Chekhonin V. Ultrasound of alternating frequencies and variable emotional impact evokes depressive syndrome in mice and rats. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2016;68):52-63. https://doi.org/10.1016/j.pnpbp. 2016.03.003

  15. Zubkov EA, Zorkina YA, Gurina OI, Melnikov PA, Morozova AY, Chekhonin VP. Prenatal exposure to brain-specific anion transporter-1-specific monoclonal antibodies impairs cognitive function in post-natal life. Neuropeptides. 2017;65:100-105. https://doi.org/10.1016/j.npep.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  16. Zhang HY, Zheng CY, Yan H, Wang ZF, Tang LL, Gao X, Tang XC. Potential therapeutic targets of huperzine A for Alzheimer’s disease and vascular dementia. Chem. Biol. Interact. 2008;175(1-3):396-402. https://doi.org/10.1016/j.cbi.2008.04.049

    Article  CAS  PubMed  Google Scholar 

  17. Winkler J, Connor DJ, Frautschy SA, Behl C, Waite JJ, Cole GM, Thal LJ. Lack of long-term effects after beta-amyloid protein injections in rat brain. Neurobiol. Aging. 1994;15(5):601-607. https://doi.org/10.1016/0197-4580(94)00054-9

    Article  CAS  PubMed  Google Scholar 

  18. O’Hare E, Scopes DI, Treherne JM, Monaghan J, Palmer PM, Amijee H, Kim EM. Novel anti-inflammatory compound SEN1176 alleviates behavioral deficits induced following bilateral intrahippocampal injection of aggregated amyloid-β1-42. J. Alzheimers Dis. 2011;25(2):219-229. https://doi.org/10.3233/JAD-2011-100044

    Article  CAS  PubMed  Google Scholar 

  19. McLarnon JG, Ryu JK. Relevance of a beta1-42 intrahippocampal injection as an animal model of inflamed Alzheimer’s disease brain. Curr. Alzheimer Res. 2008;5(5):475-480. https://doi.org/10.2174/156720508785908874

    Article  CAS  PubMed  Google Scholar 

  20. Perry G, Castellani RJ, Hirai K, Smith MA. Reactive oxygen species mediate cellular damage in Alzheimer disease. J. Alzheimers Dis. 1998;1(1):45-55. https://doi.org/10.3233/jad-1998-1103

    Article  CAS  PubMed  Google Scholar 

  21. Lin T, Liu GA, Perez E, Rainer RD, Febo M, Cruz-Almeida Y, Ebner NC. Systemic inflammation mediates age-related cognitive deficits. Front. Aging Neurosci. 2018;10:236. https://doi.org/10.3389/fnagi.2018.00236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McLarnon JG. Correlated inflammatory responses and neurodegeneration in peptide-injected animal models of Alzheimer’s disease. Biomed. Res. Int. 2014;2014:923670. https://doi.org/10.1155/2014/923670

  23. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med. 2008;14(8):837-842. https://doi.org/10.1038/nm1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat. Neurosci. 2005;8(1):79-84. https://doi.org/10.1038/nn1372

    Article  CAS  PubMed  Google Scholar 

  25. Benedikz E, Kloskowska E, Winblad B. The rat as an animal model of Alzheimer’s disease. J. Cell. Mol. Med. 2009;13(6):1034-42. https://doi.org/10.1111/j.1582-4934.2009.00781.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Paulo SL, Rodrigues RS, Shvachiy L, Ribeiro FF, Solá S, Sebastião AM, Xapelli S. Neurogenesis in a rat model of sporadic Alzheimer’s disease: PS227. Porto Biomed. J. 2017;2(5):205. https://doi.org/10.1016/j.pbj.2017.07.072

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhu D, Yang N, Liu YY, Zheng J, Ji C, Zuo PP. M2 macrophage transplantation ameliorates cognitive dysfunction in amyloid-β-treated rats through regulation of microglial polarization. J. Alzheimers Dis. 2016;52(2):483-495. https://doi.org/10.3233/JAD-151090

  28. Li S, Selkoe DJ. A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer’s brain. J. Neurochem. 2020;154(6): 583-597. https://doi.org/10.1111/jnc.15007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stepanova OV, Voronova AD, Chadin AV, Valikhov MP, Abakumov MA, Reshetov IV, Chekhonin VP. Isolation of rat olfactory ensheathing cells and their use in the therapy of posttraumatic cysts of the spinal cord. Bull. Exp. Biol. Med. 2018;165(1):132-135. https://doi.org/10.1007/s10517-018-4114-x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Karsuntseva.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 1, pp. 14-19, March, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karsuntseva, E.K., Voronova, A.D., Chadin, A.V. et al. Application of Behavioral Tests for Evaluation of an Experimental Model of Alzheimer’s Disease in Female Rats. Bull Exp Biol Med 175, 126–131 (2023). https://doi.org/10.1007/s10517-023-05823-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-023-05823-0

Keywords

Navigation