Skip to main content
Log in

Hypolypidemic Activity of L-Rhamnopyranosyl-6-O-Methyl-D-Galacturonan, a Polysaccharide Isolated from Birch Leaves (Betula pendula L.)

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

In male Syrian hamsters fed a synthetic high-fat diet enriched with cholesterol (0.3%), administration of a polysaccharide from birch leaves L-rhamnopyranosyl-6-O-methyl-D-galacturonan (3 g/100 g of diet) resulted in a decrease in total cholesterol levels, mainly due to the LDL fraction, triglycerides, and bile acids in blood serum; the content of triglycerides and cholesterol in the liver also decreased, while excretion of bile acids with feces increased. Thus, the lipid-lowering effect of L-rhamnopyranosyl-6-O-methyl-D-galacturonan is related to its ability to bind bile acids in the intestine and interrupt their enterohepatic circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooney MT, Dudina A, De Bacquer D, Wilhelmsen L, Sans S, Menotti A, De Backer G, Jousilahti P, Keil U, Thomsen T, Whincup P, Graham IM; SCORE investigators. HDL cholesterol protects against cardiovascular disease in both genders, at all ages and at all levels of risk. Atherosclerosis. 2009;206(2):611-616. doi: https://doi.org/10.1016/j.atherosclerosis.2009.02.041

  2. Feingold KR. Cholesterol Lowering Drugs. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc. 2021 Mar 30.

  3. Rovkina KI, Buyko EE, Ivanov VV, Kaidash OA, Guriev AM, Yusubov MS, Belousov MV. Lipid-lowering activity of plant polysaccharides. Trad. Med. 2019;(2):39-44. Russian.

  4. Rovkina KI, Krivoshchekov SV, Guriev AM, Yusubov MS, Belousov MV. Development of methods for obtaining polysaccharides from birch leaves (Betula pendu-la Roth., Betula pubescens Ehrh.). Khim. Rast. Syr. 2019;(3):23-31. Russian. doi: https://doi.org/10.14258/jcprm.2019035420

  5. Rovkina KI, Krivoschekov SV, Guriev AM, Yusubov MS, Bezverkhnyaya EA, Belousov MV. Development of methods for quantitative determination of polysaccharides of birch leaves. Med. Vestn. Bashkortastana. 2019;14(1):47-50. Russian.

  6. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993;123(11):1939-1951. doi: https://doi.org/10.1093/jn/123.11.1939.

    Article  CAS  PubMed  Google Scholar 

  7. Dillard A, Matthan NR, Lichtenstein AH. Use of hamster as a model to study diet-induced atherosclerosis. Nutr. Metab. (Lond.). 2010;7:89. doi: https://doi.org/10.1186/1743-7075-7-89

  8. Zhang X, Qiu B, Wang Q, Sivaprasad S, Wang Y, Zhao L, Xie R, Li L, Kang W. Dysregulated Serum Lipid Metabolism Promotes the Occurrence and Development of Diabetic Retinopathy Associated With Upregulated Circulating Levels of VEGF-A, VEGF-D, and PlGF. Front. Med. (Lausanne). 2021;8:779413. doi: https://doi.org/10.3389/fmed.2021.779413

  9. Suckling KE, Benson GM, Bond B, Gee A, Glen A, Haynes C, Jackson B. Cholesterol lowering and bile acid excretion in the hamster with cholestyramine treatment. Atherosclerosis. 1991;89(2-3):183-190. doi: https://doi.org/10.1016/0021-9150(91)90059-c

    Article  CAS  PubMed  Google Scholar 

  10. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell. Metab. 2005;2(4):217-225. doi: https://doi.org/10.1016/j.cmet.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  11. Naumann S, Schweiggert-Weisz U, Eglmeier J, Haller D, Eisner P. In Vitro Interactions of Dietary Fibre Enriched Food Ingredients with Primary and Secondary Bile Acids. Nutrients. 2019;11(6):1424. doi: https://doi.org/10.3390/nu11061424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thandapilly SJ, Ndou SP, Wang Y, Nyachoti CM, Ames NP. Barley β-glucan increases fecal bile acid excretion and short chain fatty acid levels in mildly hypercholesterolemic individuals; Food Funct. 2018;9(6):3092-3096. doi: https://doi.org/10.1039/c8fo00157j

    Article  CAS  PubMed  Google Scholar 

  13. Lan T, Haywood J, Dawson PA. Inhibition of ileal apical but not basolateral bile acid transport reduces atherosclerosis in apoE—/— mice. Atherosclerosis. 2013;229(2):374-380. doi: https://doi.org/10.1016/j.atherosclerosis.2013.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Buyko.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 174, No. 9, pp. 315-318, September, 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buyko, E.E., Ivanov, V.V., Kaidash, O.A. et al. Hypolypidemic Activity of L-Rhamnopyranosyl-6-O-Methyl-D-Galacturonan, a Polysaccharide Isolated from Birch Leaves (Betula pendula L.). Bull Exp Biol Med 174, 330–332 (2023). https://doi.org/10.1007/s10517-023-05702-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-023-05702-8

Key Words

Navigation