Skip to main content

Advertisement

Log in

Simulation of Mechanical and Thermal Wounds of Soft Tissues

  • REVIEWS
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Millions of accidental and surgical injuries of soft tissues are registered annually around the world [5]. Untimely and insufficiently effective treatment of wounds in 50-70% leads to the development of purulent-septic infection and the development of septic conditions and fatal outcomes [1-4], which necessitates thorough study of inflammatory and regenerative processes occurring in the injured soft tissues. Various models of mechanical and thermal damage to soft tissues are proposed for studying the inflammatory and reparative processes, for assessing the therapeutic effects and developing new approaches to wound treatment. However, the developed models do not fully meet the requirements of researchers and are not always simple and uniformly reproducible, close to the course of the pathology in humans, and highly reliable. When choosing the model of mechanical and thermal wounds, the experience of other researchers should be taken into consideration due to the need of actualization and improvement of existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alipov VV, Urusova AI, Andreev DA, Zhelaev MV. Soft tissues’ abscess simulation. Byull. Med. Internet-Konferents. 2016;6(12):1624. Russian.

    Google Scholar 

  2. Andreev AA, Glukhov AA, Lobas SV, Ostroushko AP. Experimental method application software of the bubbling debridement of wounds. Vestn. Eksper. Klin. Khir. 2016;9(4):314-321. doi: https://doi.org/10.18499/2070-478X-2016-9-4-314-321. Russian.

    Article  Google Scholar 

  3. Andreev AA, Ostroushko AP, Chuyan AO, Karapityan AR. Reparative Processes in Soft Tissues. Influence of Acidity. Vestn. Eksper. Klin. Khir. 2017;10(1):64-71. doi: https://doi.org/10.18499/2070-478X-2017-10-1-64-71. Russian.

  4. Arkhipov DV, Andreev AA, Atyakshin DA, Ostroushko AP. Oxygen sorption treatment in the treatment of soft tissue wounds. Vestn. Eksper. Klin. Khir. 2019;12(4):248-253. doi: https://doi.org/10.18499/2070-478X-2019-12-4-248-253. Russian.

    Article  Google Scholar 

  5. Arkhipov DV, Andreev AA, Atyashin DA, Ostroushko AP. Application of jet sorption technologies in the treatment of aseptic soft tissue wounds. Mnogoprof. Statsionar. 2020;7(1):46-47. Russian.

    Google Scholar 

  6. Afinogenov GE, Postrelov NA, Smirnov OA, Afinogenova AG, Koltsov AI. A new method of modeling a surgical wound in an experiment. Uspekhi Sovr. Estestvoznan. 2004;(2):57-58. Russian.

    Google Scholar 

  7. Bogdanov SB, Afaunova ON, Babichev RG. Topical application of wound dressings in early surgical treatment of burns on border course children. Med. Vestn. Yuga Rossii. 2016;(3):27-30. doi: https://doi.org/10.21886/2219-8075-2016-3-27-30. Russian.

    Article  Google Scholar 

  8. Bogdanov SB, Afaunova ON, Ivashenko YV, Babichev RG, Marchenkо DN. Ways of improving the organization combustiological service in Krasnodar Territory. Vestn. Eksper. Klin. Khir. 2016;9(3):247-253. doi: https://doi.org/10.18499/2070-478X-2016-9-3-247-253. Russian.

    Article  Google Scholar 

  9. Bogdanov SB, Karakulev AV, Bogdanova YuA, Sotnichenko AS, Gilevich IV, Melkonyan KI, Alad’ina VA. Method for modeling a skin wound in pigs in experiment. Saratovsk. Nauch.-Med. Zh. 2021;17(1):46-50. Russian.

    Google Scholar 

  10. Brailovskaya TV, Fedorina TA. Morphological characteristic of wound process under experimental modeling of incised and tear-contused skin wounds. Biomeditsina. 2009;(1):68-74. Russian.

    Google Scholar 

  11. Glukhov AA, Aralova MV. Evaluating the effectiveness of a combination of concentrated platelets and suspension of native collagen unreconstructed for the topical treatment of trophic ulcers of the small and medium-sized. Vestn. Eksper. Klin. Khir. 2016;9(4):275-280. doi: https://doi.org/10.18499/2070-478X-2016-9-4-275-280. Russian.

    Article  Google Scholar 

  12. Glushenkov VA. Biorezonance at the surgical clinic for diagnostics and treatment of the surgical wound infection. Vestn. Eksper. Klin. Khir. 2017;10(2):150-153. doi: https://doi.org/10.18499/2070-478X-2017-10-2-150-153. Russian.

    Article  Google Scholar 

  13. Dibirov MD, Gadzhimuradov RU, Gabitov RB, Hlutkin AV. Experimental and clinical justification wound-healing effect of bioplastic collagen material in the treatment of chronic wounds. Zh. Grodnensk. Gos. Med. Univ. 2021;19(1):23-30. doi: https://doi.org/10.25298/2221-8785-2021-19-1-23-30. Russian.

    Article  Google Scholar 

  14. Dobreikin EA, Urusova AI, Belyaev PA, Andreev DA, Kadyshev AV, Kondrakov AA. Laser technologies for modeling an infected burn wound of the skin. Byull. Med. Internet-Konf. 2014;4(5):847. Russian.

    Google Scholar 

  15. Emelyanova AM, Styazhkina SN, Shepeleva VM, Tugbaeva OG. Treatment of victims with extensive burns: a severe clinical case. Meditsina Kuzbasse. 2020;19(2):52-56. doi: https://doi.org/10.24411/2687-0053-2020-10018. Russian.

    Article  Google Scholar 

  16. Ivanyushkina RI, Styazhkina SN. Burns sepsis as a complication of thermal burn. European research: innovation in science, education and technology. ХXXVI International Scientific and Practical Conference. London, 15-16 Jan. 2018. Moscow, 2018:61-64.

  17. Kozlova MN, Zemskov VM, Alekseev AA, Barsukov AA, Shishkina NS, Demidova VS. Features of immune status and immunocorrection in burn disease. Ros. Allergol. Zh. 2019;16(S1):76-79. Russian.

    Google Scholar 

  18. Krivenchuk VA, Dundarov ZA, Zyblev SL. A method for modeling aseptic wounds. Modern Technologies in Surgical Practice. Snezhitsy VA, ed. Grodno, 2017. P. 109-111. Russian.

  19. Maskin SS, Pavlov AV, Igolkina LA, Maksimova PV, Suleimanova LR. Experimental modeling of purulent process in soft tissues: comparison of methods of infected wound and subcutaneous abscess. Mezhdunar. Zh. Eksp. Obrazovaniya. 2017;(4-2):165-167. Russian.

  20. Melamed VD, Petelsky YuV, Ershova MV, Chernova NN, Valentyukevich AL, Tarasova NA, Lapchuk KL. Modeling of a primary contaminated experimental skin wound. Actual Problems of Medicine. Materials of the Annual Final Scientific and Practical Conference. Grodno, 2017. P. 637-640. Russian.

  21. Menzul VA, Kovalev AS, Smelyaya TV, Zinoviev EV, Kostyakov DV. Critical flame burns (clinical observation). Ros. Biomed. Issled. 2019;4(3):17-24. Russian.

    Google Scholar 

  22. Miziev IA, Baksanov KhD, Zhigunov AK, Akhkubekov RA, Berov RB, Dabagov OYu, Soltanov EI, Dyshekova FA. Hospital mortality in combined injury and the ways of its reduction. Zdorov’e Obrazovanie XXI veke. 2018;20(12):116-119. Russian.

    Google Scholar 

  23. Pariyskaya EN, Zakharova LB, Orlova OG, Rybalchenko OV, Golovanova NE, Astratenkova IV. The practice of modeling pyoinflammatory wounds at the immunosuppression. Lab. Zhivotnie Nauch. Issledovaniy. 2018;(4):116-124. doi: https://doi.org/10.29296/2618723X-2018-04-09. Russian.

    Article  Google Scholar 

  24. Vorobyev AA, Utenkov DG, Poroyskiy SV. Utility Model Patent RU 41908 U1. Device for experimental modeling of skin wounds. Published November 10, 2004.

  25. Pogodina MA, Shechter AB, Rudenko TG. Utility Model Patent RU 72348 U1. A device for modeling skin wounds. Published April 10, 2008.

  26. Kiryanov YuM, Gorbach EN, Naumov EA. Utility Model Patent RU 88837 U1. Device for modeling standard skin wounds in an experiment. Published November 20, 2009.

  27. Nikolaevsky VA, Fedosov PA, Buzlama AV. Utility model patent RU 172252 U1. Device for modeling experimental thermal burn wounds of various degrees. Bull. No. 19. Published July 3, 2017.

  28. Gumenyuk SE, Ushmarov DI, Gumenyuk AS, Isyanova DR, Gumenyuk IS, Dzhopua MA, Turenko AD. Patent RU No. 2703709. Method for simulating an experimental soft tissue wound in rats for developing a therapeutic approach. Byull. No. 30. Published October 21, 2019.

  29. Potekaev NN, Frigo NV, Michenko AV, Lvov AN, Panteleev AA, Kitaeva NV. Chronic indolent ulcers and wounds of the skin and subcutaneous tissue. Klin. Dermatol. Venerol. 2018;17(6):7-12. doi: https://doi.org/10.17116/klinderma2018170617. Russian.

    Article  Google Scholar 

  30. Romanouski YV, Valasheniuk AN, Zavada NV, Yauseyeu HM. The structure of mortality in severe mechanical injury. Med. Novosti. 2020;(9):80-83. Russian.

    Google Scholar 

  31. Salmina TA, Tsygipalo AI, Shkoda AS. The experience of use of pyobacteriophage polyvalent purified for the treatment of purulent wounds with prolonged and ineffective treatment with antibacterial drugs. Trudny Patsient. 2016;14(10-11):23-29. Russian.

    Google Scholar 

  32. Smotryn SM, Aslauski AI, Melamed VD, Grakovich PV. Sorption-drainage devices in complex treatment of purulent wounds and abscesses of soft tissues. Novosti Khirurgii. 2016;24(5):457-464. doi: https://doi.org/10.18484/2305-0047.2016.5.457. Russian.

    Article  Google Scholar 

  33. Suborova TN, Volkova II, Kluychenko NS. The prevalence of wound infection caused by staphylococcus aureus in surgical hospital patients. V Luga Scientific Readings. Modern Scientific Knowledge: Theory and Practice. Materials of the International Scientific Conference. St. Petersburg, 2017. P. 173-176. Russian.

  34. Shaymonov AKh, Gulin AV, Saidov MS. Surgical treatment of patients with scar burns complications of upper limb (literature review). Vestn. Tambovskogo Univ. Ser.: Estestv. Tekh. Nauki. 2017;55(2):368-374. doi: https://doi.org/10.20310/1810-0198-2017-22-2-368-374. Russian.

    Article  Google Scholar 

  35. Shepeleva VM, Tugbaeva OG, Emelyanova AM, Styazhkina SN. Complex treatment of patients with burns of the III degree: a clinical case. Modern Science. 2020;(4-3):299-303. Russian.

  36. Dunn L, Prosser HC, Tan JT, Vanags LZ, Ng MK, Bursill CA. Murine model of wound healing. J. Vis. Exp. 2013;(75):e50265. doi: https://doi.org/10.3791/50265

    Article  Google Scholar 

  37. Jung Y, Son D, Kwon S, Kim J, Han K. Experimental pig model of clinically relevant wound healing delay by intrinsic factors. Int. Wound J. 2013;10(3):295-305. doi: https://doi.org/10.1111/j.1742-481X.2012.00976.x

    Article  PubMed  Google Scholar 

  38. Karner L, Drechsler S, Metzger M, Slezak P, Zipperle J, Pinar G, Sterflinger K, Leisch F, Grillari J, Osuchowski M, Dungel P. Contamination of wounds with fecal bacteria in immuno-suppressed mice. Sci. Rep. 2020;10(1):11494. doi: https://doi.org/10.1038/s41598-020-68323-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stone RC, Stojadinovic O, Rosa AM, Ramirez HA, Badiavas E, Blumenberg M, Tomic-Canic M. A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers. Sci. Transl. Med. 2017;9:eaaf8611. doi: https://doi.org/10.1126/scitranslmed.aaf8611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Laptieva.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 173, No. 3, pp. 272-278, March, 2022

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, A.A., Glukhov, A.A., Ostroushko, A.P. et al. Simulation of Mechanical and Thermal Wounds of Soft Tissues. Bull Exp Biol Med 173, 287–292 (2022). https://doi.org/10.1007/s10517-022-05535-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-022-05535-x

Key Words

Navigation