Skip to main content
Log in

Interaction of Human Dendritic Cells with Graphene Oxide Nanoparticles In Vitro

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effect of graphene oxide nanoparticles on the differentiation of human dendritic cells and uptake of nanoparticles by these cells in vitro. The objects of the study were mononuclear cells from healthy donors induced into the phenotype of dendritic cells by cytokines (IL-6 and GM-CSF). We used graphene oxide nanoparticles of different sizes functionalized with linear or branched PEG (P-GO or bP-GO) in concentrations of 5 and 25 μg/ml. It was found that graphene oxide nanoparticles did not affect the viability and percentage of dendritic cells in the culture. However, P-GO nanoparticles (25 μg/ml) suppressed the expression of CD83 on the surface of dendritic cells in cultures, thereby suppressing cell differentiation. Dendritic cells internalized P-GO nanoparticles, particles in high concentration were more actively engulfed, but the size of the particles and the type of PEG did not affect the intensity of this process. In general, P-GO nanoparticles in a concentration of 25 μg/ml can regulate differentiation of dendritic cells by suppressing their maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Konev VA, Bozhkova SA, Trushnikov VV, Anisimova LO, Netyl’ko GI, Parfeev DG. Dynamic of tissue changes in one and two stage treatment of chronic osteomyelitis using bioresorbable material impregnated with vancomycin (comparative experimental morphological study). Geny Kletki. 2020;15(3):29-38. doi: 10.23868/202011004. Russian.

  2. Achawi S, Pourchez J, Feneon B, Forest V. Graphene-based materials in vitro toxicity and their structure-activity relationships: a systematic literature review. Chem. Res. Toxicol. 2021;34(9):2003-2018. doi: https://doi.org/10.1021/acs.chemrestox.1c00243

    Article  CAS  PubMed  Google Scholar 

  3. Benvenuti F, Lagaudrière-Gesbert C, Grandjean I, Jancic C, Hivroz C, Trautmann A, Lantz O, Amigorena S. Dendritic cell maturation controls adhesion, synapse formation, and the duration of the interactions with naive T lymphocytes. J. Immunol. 2004;172(1):292-301. doi: https://doi.org/10.4049/jimmunol.172.1.292

    Article  CAS  PubMed  Google Scholar 

  4. Cicuéndez M, Fernandes M, Ayán-Varela M, Oliveira H, Feito MJ, Diez-Orejas R, Paredes JI, Villar-Rodil S, Vila M, Portolés MT, Duarte IF. Macrophage inflammatory and metabolic responses to graphene-based nanomaterials differing in size and functionalization. Colloids Surf. B Biointerfaces. 2020;186:110709. doi: https://doi.org/10.1016/j.colsurfb.2019.11070

    Article  PubMed  Google Scholar 

  5. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39(1):228-240. doi: https://doi.org/10.1039/b917103g

    Article  CAS  PubMed  Google Scholar 

  6. Jia J, Zhang Y, Xin Y, Jiang C, Yan B, Zhai S. Interactions between nanoparticles and dendritic cells: from the perspective of cancer immunotherapy. Front. Oncol. 2018;8:404. doi:https://doi.org/10.3389/fonc.2018.00404

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jin P, Han TH, Ren J, Saunders S, Wang E, Marincola FM, Stroncek DF. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies. J. Transl. Med. 2010;8:4. doi: https://doi.org/10.1186/1479-5876-8-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li Z, Ju X, Silveira PA, Abadir E, Hsu WH, Hart DNJ, Clark GJ. CD83: activation marker for antigen presenting cells and its therapeutic potential. Front. Immunol. 2019;10:1312. doi: https://doi.org/10.3389/fimmu.2019.01312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luo N, Weber JK, Wang S, Luan B, Yue H, Xi X, Du J, Yang Z, Wei W, Zhou R, Ma G. PEGylated graphene oxide elicits strong immunological responses despite surface passivation. Nat. Commun. 2017;8:14537. doi: https://doi.org/10.1038/ncomms14537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Orecchioni M, Bedognetti D, Newman L, Fuoco C, Spada F, Hendrickx W, Marincola FM, Sgarrella F, Rodrigues AF, Ménard-Moyon C, Cesareni G, Kostarelos K, Bianco A, Delogu LG. Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells. Nat. Commun. 2017;8(1):1109. doi: https://doi.org/10.1038/s41467-017-01015-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sato K, Fujita S. Dendritic cells: nature and classification. Allergol. Int. 2007;56(3):183-191. doi: https://doi.org/10.2332/allergolint.R-06-139

    Article  PubMed  Google Scholar 

  12. Schreibelt G, Tel J, Sliepen KH, Benitez-Ribas D, Figdor CG, Adema GJ, de Vries IJ. Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy. Cancer Immunol. Immunother. 2010;59(10):1573-1582. doi: https://doi.org/10.1007/s00262-010-0833-1

    Article  CAS  PubMed  Google Scholar 

  13. Singh DP, Herrera CE, Singh B, Singh S, Singh RK, Kumar R. Graphene oxide: an efficient material and recent approach for biotechnological and biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;86:173-197. doi: https://doi.org/10.1016/j.msec.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  14. Singh SK, Singh MK, Nayak MK, Kumari S, Grácio JJ, Dash D. Characterization of graphene oxide by flow cytometry and assessment of its cellular toxicity. J. Biomed. Nanotechnol. 2011;7(1):30-31. doi: https://doi.org/10.1166/jbn.2011.1186

    Article  CAS  PubMed  Google Scholar 

  15. Tkach AV, Yanamala N, Stanley S, Shurin MR, Shurin GV, Kisin ER, Murray AR, Pareso S, Khaliullin T, Kotchey GP, Castranova V, Mathur S, Fadeel B, Star A, Kagan VE, Shvedova AA. Graphene oxide, but not fullerenes, targets immunoproteasomes and suppresses antigen presentation by dendritic cells. Small. 2013;9(9-10):1686-1690. doi: https://doi.org/10.1002/smll.201201546

    Article  CAS  PubMed  Google Scholar 

  16. Tomić S, Janjetović K, Mihajlović D, Milenković M, Kravić-Stevović T, Marković Z, Todorović-Marković B, Spitalsky Z, Micusik M, Vučević D, Čolić M, Trajković V. Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. Biomaterials. 2017;146:13-28. doi: https://doi.org/10.1016/j.biomaterials.2017.08.040

    Article  CAS  PubMed  Google Scholar 

  17. Xu L, Xiang J, Liu Y, Xu J, Luo Y, Feng L, Liu Z, Peng R. Functionalized graphene oxide serves as a novel vaccine nano- adjuvant for robust stimulation of cellular immunity. Nanoscale. 2016;8(6):3785-3795. doi: https://doi.org/10.1039/c5nr09208f

    Article  CAS  PubMed  Google Scholar 

  18. Xu M, Zhu J, Wang F, Xiong Y, Wu Y, Wang Q, Weng J, Zhang Z, Chen W, Liu S. Improved in vitro and in vivo biocompatibility of graphene oxide through surface modification: poly(acrylic acid)-functionalization is superior to PEGylation. ACS Nano. 2016;10(3):3267-3281. doi: https://doi.org/10.1021/acsnano.6b00539

    Article  CAS  PubMed  Google Scholar 

  19. Yang Z, Pan Y, Chen T, Li L, Zou W, Liu D, Xue D, Wang X, Lin G. Cytotoxicity and immune dysfunction of dendritic cells caused by graphene oxide. Front. Pharmacol. 2020;11:1206. doi: https://doi.org/10.3389/fphar.2020.01206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yue H, Wei W, Gu Z, Ni D, Luo N, Yang Z, Zhao L, Garate JA, Zhou R, Su Z, Ma G. Exploration of graphene oxide as an intelligent platform for cancer vaccines. Nanoscale. 2015;7(47):19949-19957. doi: https://doi.org/10.1039/c5nr04986e

    Article  CAS  PubMed  Google Scholar 

  21. Zhi X, Fang H, Bao C, Shen G, Zhang J, Wang K, Guo S, Wan T, Cui D. The immunotoxicity of graphene oxides and the effect of PVP-coating. Biomaterials. 2013;34(21):5254-5261. doi: https://doi.org/10.1016/j.biomaterials.2013.03.024

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Uzhviyuk.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 261-268, December, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzhviyuk, S.V., Bochkova, M.S., Timganova, V.P. et al. Interaction of Human Dendritic Cells with Graphene Oxide Nanoparticles In Vitro. Bull Exp Biol Med 172, 664–670 (2022). https://doi.org/10.1007/s10517-022-05451-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-022-05451-0

Key Words

Navigation