Skip to main content
Log in

Analysis of Antibacterial Action of Mammalian Host-Defense Cathelicidins and Induction of Resistance to Them in MβL-Producing Pseudomonas aeruginosa

  • IMMUNOLOGY AND MICROBIOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Recombinant analogs of a number of natural host-defense mammalian cathelicidins were obtained and predominant mechanism of their antibacterial action was studied. The ability of cathelicidins to suppress the growth of Pseudomonas aeruginosa producing metallo-β-lactamases (MβL) was studied, and the possibility of appearance of cathelicidin-resistant bacteria was evaluated. Among peptides with different structures and mechanisms of action, only the strains resistant to ChMAP-28 were not obtained, which indicated minimum risk of the development of natural resistance to this cathelicidin. High antibacterial activity, wide spectrum of action, and the absence of cross-resistance effects allow considering ChMAP-28 peptide as a candidate to be developed further as a therapeutic agent against MβL-producing bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shevchenko OV, Edelstein MV, Stepanova MN. Metallo-betalactamases: importance and detection methods in gram-negative non-fermenting bacteria. Klin. Mikrobiol., Antimikrob., Khimioter. 2007;9(3):211-219. Russian.

    Google Scholar 

  2. Agadi N, Vasudevan S, Kumar A. Structural insight into the mechanism of action of antimicrobial peptide BMAP-28(1-18) and its analogue mutBMAP18. J. Struct. Biol. 2018;204(3):435-448. doi: https://doi.org/10.1016/j.jsb.2018.10.003

    Article  CAS  PubMed  Google Scholar 

  3. Brem J, Cain R, Cahill S, McDonough MA, Clifton IJ, Jiménez- Castellanos JC, Avison MB, Spencer J, Fishwick CW, Schofield CJ. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat. Commun. 2016;7:12406. doi: https://doi.org/10.1038/ncomms12406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Graf M, Mardirossian M, Nguyen F, Seefeldt AC, Guichard G, Scocchi M, Innis CA, Wilson DN. Proline-rich antimicrobial peptides targeting protein synthesis. Nat. Prod. Rep. 2017;34(7):702-711. doi: https://doi.org/10.1039/c7np00020k

    Article  CAS  PubMed  Google Scholar 

  5. Hsu CH, Chen C, Jou ML, Lee AY, Lin YC, Yu YP, Huang WT, Wu SH. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res. 2005;33(13):4053-4064. doi: https://doi.org/10.1093/nar/gki725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. King AM, Reid-Yu SA, Wang W, King DT, De Pascale G, Strynadka NC, Walsh TR, Coombes BK, Wright GD. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature. 2014;510:503-506. doi: https://doi.org/10.1038/nature13445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morroni G, Simonetti O, Brenciani A, Brescini L, Kamysz W, Kamysz E, Neubauer D, Caffarini M, Orciani M, Giovanetti E, Offidani A, Giacometti A, Cirioni O. In vitro activity of Protegrin-1, alone and in combination with clinically useful antibiotics, against Acinetobacter baumannii strains isolated from surgical wounds. Med. Microbiol. Immunol. 2019;208(6):877-883. doi: https://doi.org/10.1007/s00430-019-00624-7

    Article  CAS  PubMed  Google Scholar 

  8. Panteleev PV, Bolosov IA, Kalashnikov AÀ, Kokryakov VN, Shamova OV, Emelianova AA, Balandin SV, Ovchinnikova TV. Combined antibacterial effects of goat cathelicidins with different mechanisms of action. Front. Microbiol. 2018;9:2983. doi: https://doi.org/10.3389/fmicb.2018.02983

    Article  PubMed  PubMed Central  Google Scholar 

  9. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011;70(1):119-123. doi: https://doi.org/10.1016/j.diagmicrobio.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  10. Queenan AM, Bush K. Carbapenemases: the versatile betalactamases. Clin. Microbiol. Rev. 2007;20(3):440-458. doi: https://doi.org/10.1128/CMR.00001-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sang Y, Blecha F. Porcine host defense peptides: expanding repertoire and functions. Dev. Comp. Immunol. 2009;33(3):334-443. doi: https://doi.org/10.1016/j.dci.2008.05.006

    Article  CAS  PubMed  Google Scholar 

  12. Schmidtchen A, Pasupuleti M, Mörgelin M, Davoudi M, Alenfall J, Chalupka A, Malmsten M. Boosting antimicrobial peptides by hydrophobic oligopeptide end tags. J. Biol. Chem. 2009;284(26):17584-17594. doi: https://doi.org/10.1074/jbc.M109.011650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Harten RM, van Woudenbergh E, van Dijk A, Haagsman HP. Cathelicidins: immunomodulatory antimicrobials. Vaccines (Basel). 2018;6(3):63. doi: https://doi.org/10.3390/vaccines6030063

    Article  CAS  PubMed Central  Google Scholar 

  14. Wu JY, Srinivas P, Pogue JM. Cefiderocol: a novel agent for the management of multidrug-resistant Gram-negative organisms. Infect. Dis. Ther. 2020;9(1):17-40. doi: https://doi.org/10.1007/s40121-020-00286-6

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yarlagadda V, Sarkar P, Samaddar S, Manjunath GB, Mitra SD, Paramanandham K, Shome BR, Haldar J. Vancomycin analogue restores meropenem activity against NDM-1 Gramnegative pathogens. ACS Infect. Dis. 2018;4(7):1093-1101. doi: https://doi.org/10.1021/acsinfecdis.8b00011

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Ovchinnikova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 172, No. 10, pp. 459-465, October, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panteleev, P.V., Bolosov, I.A., Khokhlova, V.A. et al. Analysis of Antibacterial Action of Mammalian Host-Defense Cathelicidins and Induction of Resistance to Them in MβL-Producing Pseudomonas aeruginosa. Bull Exp Biol Med 172, 447–452 (2022). https://doi.org/10.1007/s10517-022-05411-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-022-05411-8

Key Words

Navigation