Skip to main content

Advertisement

Log in

Morphofunctional Properties of Corneal Stromal Cells

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Human corneal stromal cells were isolated by enzymatic digestion from a new source, lenticules obtained during laser vision correction by the ReLEx SMILe method. The resulting culture was mainly presented by fibroblast-like cells with a phenotype CD90—/CD73+/CD105+/keratocan—/lumican—/ALDH1A1+ that differentiate into keratocytes in a specialized medium. The concentration of fetal calf serum-derived growth factors affects the rate of proliferation, production of erythropoietin and brain neurotrophic factor by corneal fibroblasts, and to a lesser extent, their migration activity and production of extracellular matrix components. Thus, the high functional potential of fibroblast-like cells isolated from stromal lenticles can be used to develop cell technologies in ophthalmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buss DG, Giuliano EA, Sharma A, Mohan RR. Isolation and culturing of equine corneal keratocytes, fibroblasts and myofibroblasts. Vet. Ophthalmol. 2010;13(1):37-42. doi: https://doi.org/10.1111/j.1463-5224.2009.00755.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen J, Zhang W, Backman LJ, Kelk P, Danielson P. Mechanical stress potentiates the differentiation of periodontal ligament stem cells into keratocytes. Br. J. Ophthalmol. 2018;102(4):562-569. doi: https://doi.org/10.1136/bjophthalmol-2017-311150

    Article  PubMed  Google Scholar 

  3. Das SK, Gupta I, Cho YK, Zhang X, Uehara H, Muddana SK, Bernhisel AA, Archer B, Ambati BK. Vimentin knockdown decreases corneal opacity. Invest. Ophthalmol. Vis. Sci. 2014;55(7):4030-4040. doi: https://doi.org/10.1167/iovs.13-13494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H, Naidoo K, Pesudovs K, Silvester A, Stevens GA, Tahhan N, Wong TY, Taylor HR; Vision Loss Expert Group of the Global Burden of Disease Study. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob. Health. 2017;5(12):e1221-e1234. doi: https://doi.org/10.1016/S2214-109X(17)30393-5

  5. Funderburgh ML, Du Y, Mann MM, SundarRaj N, Funderburgh JL. PAX6 expression identifies progenitor cells for corneal keratocytes. FASEB J. 2005;19(10):1371-1373. doi: https://doi.org/10.1096/fj.04-2770fje

  6. Funderburgh JL, Mann MM, Funderburgh ML. Keratocyte phenotype mediates proteoglycan structure: a role for fibroblasts in corneal fibrosis. J. Biol. Chem. 2003;278(46):45629-45637. doi: https://doi.org/10.1074/jbc.M303292200

  7. Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent. Exp. Eye Res. 2018;173:188-193. doi:https://doi.org/10.1016/j.exer.2018.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jin H, He M, Liu H, Zhong X, Wu J, Liu L, Ding H, Zhang C, Zhong X. Small-incision femtosecond laser-assisted intracorneal concave lenticule implantation in patients with keratoconus. Cornea. 2019;38(4):446-453. doi: https://doi.org/10.1097/ICO.0000000000001877

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li S, Cui Z, Gu J, Wang Y, Tang S, Chen J. Effect of porcine corneal stromal extract on keratocytes from SMILE-derived lenticules. J. Cell. Mol. Med. 2021;25(2):1207-1220. doi: https://doi.org/10.1111/jcmm.16189

    Article  CAS  PubMed  Google Scholar 

  10. Long CJ, Roth MR, Tasheva ES, Funderburgh M, Smit R, Conrad GW, Funderburgh JL. Fibroblast growth factor-2 promotes keratan sulfate proteoglycan expression by keratocytes in vitro. J. Biol. Chem. 2000;275(18):13918-19923. doi: https://doi.org/10.1074/jbc.275.18.13918

  11. Mastropasqua L, Massaro-Giordano G, Nubile M, Sacchetti M. Understanding the pathogenesis of neurotrophic keratitis: the role of corneal nerves. J. Cell. Physiol. 2017;232(4):717-724. doi: https://doi.org/10.1002/jcp.25623

    Article  CAS  PubMed  Google Scholar 

  12. Miron-Mendoza M, Graham E, Manohar S, Petroll WM. Fibroblast-fibronectin patterning and network formation in 3D fibrin matrices. Matrix Biol. 2017;64:69-80. doi: https://doi.org/10.1016/j.matbio.2017.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stahl A, Buchwald A, Martin G, Junker B, Chen J, Hansen LL, Agostini HT, Smith LE, Feltgen N. Vitreal levels of erythropoietin are increased in patients with retinal vein occlusion and correlate with vitreal VEGF and the extent of macular edema. Retina. 2010;30(9):1524-1529. doi: https://doi.org/10.1097/IAE.0b013e3181d37539

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yam GH, Williams GP, Setiawan M, Yusoff NZ, Lee XW, Htoon HM, Zhou L, Fuest M, Mehta JS. Nerve regeneration by human corneal stromal keratocytes and stromal fibroblasts. Sci. Rep. 2017;7:45396. doi: https://doi.org/10.1038/srep45396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Surovtseva.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 172, No. 7, pp. 115-119, July, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surovtseva, M.A., Poveshchenko, O.V., Krasner, K.Y. et al. Morphofunctional Properties of Corneal Stromal Cells. Bull Exp Biol Med 172, 96–99 (2021). https://doi.org/10.1007/s10517-021-05339-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-021-05339-5

Key Words

Navigation