Skip to main content
Log in

Functioning of the Antioxidant Defense System in Rotenone-Induced Parkinson’s Disease

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

A Correction to this article was published on 19 November 2021

This article has been updated

A comprehensive study of the functioning of antioxidant system in rats with rotenone-induced parkinsonism was conducted. The development of pathology led to inhibition of the majority of the studied antioxidant enzymes in the brain and blood serum of animals, which can be associated with decompensation of oxidative stress under conditions of prolonged mitochondrial dysfunction. These changes apparently make an important contribution into neuronal degeneration in the cerebral cortex and striatum and motor disorders in experimental animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Ablat N, Lv D, Ren R, Xiaokaiti Y, Ma X, Zhao X, Sun Y, Lei H, Xu J, Ma Y, Qi X, Ye M, Xu F, Han H, Pu X. Neuroprotective effects of a standardized flavonoid extract from safflower against a rotenone-induced rat model of Parkinson’s disease. Molecules. 2016;21(9):1107. doi: https://doi.org/10.3390/molecules21091107

    Article  CAS  PubMed Central  Google Scholar 

  2. Ball N, Teo WP, Chandra S, Chapman J. Parkinson’s disease and the environment. Front. Neurol. 2019;10:218. doi: https://doi.org/10.3389/fneur.2019.00218

    Article  PubMed  PubMed Central  Google Scholar 

  3. Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020;19(2):170-178. doi: https://doi.org/10.1016/S1474-4422(19)30287-X

    Article  CAS  PubMed  Google Scholar 

  4. Gökçe Çokal B, Yurtdaş M, Keskin Güler S, Güneş HN, Ataç Uçar C, Aytaç B, Durak ZE, Yoldaş TK, Durak İ, Çubukçu HC. Serum glutathione peroxidase, xanthine oxidase, and superoxide dismutase activities and malondialdehyde levels in patients with Parkinson’s disease. Neurol. Sci. 2017;38(3):425-431. doi: https://doi.org/10.1007/s10072-016-2782-8

    Article  PubMed  Google Scholar 

  5. Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta. 1991;196(2-3):143-151. doi: https://doi.org/10.1016/0009-8981(91)90067-m

    Article  PubMed  Google Scholar 

  6. Greenamyre JT, Cannon JR, Drolet R, Mastroberardino PG. Lessons from the rotenone model of Parkinson’s disease. Trends Pharmacol. Sci. 2010;31(4):141-142; author reply 142-3. doi: https://doi.org/10.1016/j.tips.2009.12.006

  7. Guo JD, Zhao X, Li Y, Li GR, Liu XL. Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (Review). Int. J. Mol. Med. 2018;41(4):1817-1825. doi: https://doi.org/10.3892/ijmm.2018.3406

    Article  CAS  PubMed  Google Scholar 

  8. Kryl’skii ED, Popova TN, Safonova OA, Stolyarova AO, Razuvaev GA, de Carvalho MAP. Transcriptional regulation of antioxidant enzymes activity and modulation of oxidative stress by melatonin in rats under cerebral ischemia/reperfusion conditions. Neuroscience. 2019;406:653-666. doi: https://doi.org/10.1016/j.neuroscience.2019.01.046

    Article  CAS  PubMed  Google Scholar 

  9. Kujawska M, Jourdes M, Kurpik M, Szulc M, Szaefer H, Chmielarz P, Kreiner G, Krajka-Kuźniak V, Mikołajczak PŁ, Teissedre PL, Jodynis-Liebert J. Neuroprotective effects of pomegranate juice against Parkinson’s disease and presence of ellagitannins-derived metabolite-urolithin A-in the brain. Int. J. Mol. Sci. 2019;21(1):202. doi: https://doi.org/10.3390/ijms21010202

    Article  CAS  PubMed Central  Google Scholar 

  10. Piskarev IM, Trofimova SV, Burkhina OE, Ivanova IP. Investigation of free radical processes in substrates and biological samples by means of induced chemiluminescence. Biofizika. 2015;60(3):496-505.

    CAS  PubMed  Google Scholar 

  11. Sarbishegi M, Charkhat Gorgich EA, Khajavi O, Komeili G, Salimi S. The neuroprotective effects of hydro-alcoholic extract of olive (Olea europaea L.) leaf on rotenone-induced Parkinson’s disease in rat. Metab. Brain Dis. 2018;33(1):79-88. doi: https://doi.org/10.1007/s11011-017-0131-0.

    Article  CAS  Google Scholar 

  12. Sharma A, Kaur P, Kumar B, Prabhakar S, Gill KD. Plasma lipid peroxidation and antioxidant status of Parkinson’s disease patients in the Indian population. Parkinsonism Relat. Disord. 2008;14(1):52-57. doi: https://doi.org/10.1016/j.parkreldis.2007.06.009

    Article  PubMed  Google Scholar 

  13. Wei Z, Li X, Li X, Liu Q, Cheng Y. Oxidative stress in Parkinson’s disease: a systematic review and meta-analysis. Front. Mol. Neurosci. 2018;11:236. doi: https://doi.org/10.3389/fnmol.2018.00236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Kryl’skii.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 171, No. 6, pp. 701-707, June, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryl’skii, E.D., Razuvaev, G.A., Potapova, T.N. et al. Functioning of the Antioxidant Defense System in Rotenone-Induced Parkinson’s Disease. Bull Exp Biol Med 171, 716–721 (2021). https://doi.org/10.1007/s10517-021-05302-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-021-05302-4

Key Words

Navigation