Skip to main content
Log in

Myelopeptides Reduce Morphine Tolerance in C57BL/6j Mice

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The development of morphine tolerance in C57BL/6j mice was estimated by the analgesic effect in tail-flick and hot plate tests. Morphine hydrochloride (10 mg/kg body weight) was administered to animals twice for 5 days and once on the sixth day, saline or myelopeptides were injected 15 min before morphine administration (2 μg/kg body weight). In the tail-flick test, all studied myelopeptides suppressed the development of tolerance to morphine and did not show their own analgesic activity. In the hot plate test, only three myelopeptides (MP2, MP5, and MP6) were found to reduce the formation of morphine tolerance. MP1 significantly reduced the analgesic effect of morphine on days 1-3 of administration, but contributed to the preservation of the analgesic effect during the period of tolerance development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petrov RV, Mikhailova AA, Fonina LA. Myelopeptides as bone marrow immunoregulators. Ross. Khim. Zh. 2005;49(1):55-63. Russian.

    CAS  Google Scholar 

  2. Shekunova E, Kashkin V, Makarova M, Makarov V. The experimental models of pain and nociception. Mezhdunarod. Vestn. Veterinar. 2015;(2):87-95. Russian.

    Google Scholar 

  3. Allouche S, Noble F, Marie N. Opioid receptor desensitization: mechanisms and its link to tolerance. Front. Pharmacol. 2014;5:280. https://doi.org/10.3389/fphar.2014.00280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ghazvini H, Rezayof A, Ghasemzadeh Z, Zarrindast MR. μ-Opioid and N-methyl-D-aspartate receptors in the amygdala contribute to minocycline-induced potentiation of morphine analgesia in rats. Behav. Pharmacol. 2015;26(4):383-392. https://doi.org/10.1097/FBP.0000000000000126

    Article  CAS  PubMed  Google Scholar 

  5. Hu X, Tian X, Guo X, He Y, Chen H, Zhou J, Wang ZJ. AMPA receptor positive allosteric modulators attenuate morphine tolerance and dependence. Neuropharmacology. 2018;137:50-58. https://doi.org/10.1016/j.neuropharm.2018.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khanna S. Nociceptive processing in the hippocampus and entorhinal cortex, neurophysiology and pharmacology. Encyclopedia of Pain. Schmidt R, Willis W, eds. Springer, 2013. https://doi.org/10.1007/978-3-642-28753-4_2761

  7. Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J. The Mechanisms Involved in Morphine Addiction: An Overview. Int. J. Mol. Sci. 2019;20(17):4302. https://doi.org/10.3390/ijms20174302

    Article  CAS  PubMed Central  Google Scholar 

  8. Liu DQ, Zhou YQ, Gao F. Targeting Cytokines for Morphine Tolerance: A Narrative Review. Curr. Neuropharmacol. 2019; 17(4):366-376. https://doi.org/10.2174/1570159X15666171128144441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Alboghobeish S, Amirgholami N, Houshmand G, Cauli O. Venlafaxine prevents morphine antinociceptive tolerance: The role of neuroinflammation and the l-arginine-nitric oxide pathway. Exp. Neurol. 2018;303:134-141. https://doi.org/10.1016/j.expneurol.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  10. Morgan MM, Christie MJ. Analysis of opioid efficacy, tolerance, addiction and dependence from cell culture to human. Br. J. Pharmacol. 2011;164(4):1322-1334. https://doi.org/10.1111/j.1476-5381.2011.01335.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pajohanfar NS, Mohebbi E, Rad A, Pejhan A, Nazemi S, Amin B. Protective effects of atorvastatin against morphineinduced tolerance and dependence in mice. Brain Res. 2017;1657:333-339. https://doi.org/10.1016/j.brainres.2016.12.028

    Article  CAS  PubMed  Google Scholar 

  12. Pan Y, Sun X, Jiang L, Hu L, Kong H, Han Y, Qian C, Song C, Qian Y, Liu W. Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation. J. Neuroinflammation. 2016;13(1):294. https://doi.org/10.1186/s12974-016-0754-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ueda H, Ueda M. Mechanisms underlying morphine analgesic tolerance and dependence. Front. Biosci. (Landmark Ed). 2009;14:5260-72. https://doi.org/10.2741/3596

  14. Zeng XS, Geng WS, Wang ZQ, Jia JJ. Morphine Addiction and Oxidative Stress: The Potential Effects of Thioredoxin-1. Front. Pharmacol. 2020;11:82. https://doi.org/10.3389/fphar.2020.00082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang J, Wang Y, Qi X. Systemic Rapamycin Attenuates Morphine-Induced Analgesic Tolerance and Hyperalgesia in Mice. Neurochem. Res. 2019;44(2):465-471. https://doi.org/10.1007/s11064-018-2699-0

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Starostina.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 171, No. 5, pp. 596-600, May, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokina, N.S., Starostina, M.V. Myelopeptides Reduce Morphine Tolerance in C57BL/6j Mice. Bull Exp Biol Med 171, 623–626 (2021). https://doi.org/10.1007/s10517-021-05282-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-021-05282-5

Key Words

Navigation