Skip to main content

Advertisement

Log in

Extracellular Matrix Proteins and Transcription of Matrix-Associated Genes in Mesenchymal Stromal Cells during Modeling of the Effects of Microgravity

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effects of simulated microgravity (10 days) on the production of extracellular matrix proteins and expression of extracellular matrix-associated genes in human mesenchymal stem cells. A decrease in collagen production, reduced expression of TIMP-1, TIMP-3, and MMP-11 genes, and enhanced expression of tenascin and laminin subunit were revealed. The results attest to activation of proteolytic processes in the matrix of mesenchymal stromal cells and weakening of cell adhesion to extracellular matrix under conditions of simulated microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gershovich PM, Gershovich JG, Buravkova LB. Cytoskeleton structures and adhesion properties of human stromal precursors under conditions of simulated microgravity. Tsitologiya. 2009;51(11):896-903. Russian.

    CAS  Google Scholar 

  2. Gershovich JG, Buravkova LB. Morphofunctional status and osteogenic differentiation potential of human mesenchymal stromal precursor cells during in vitro modeling of microgravity effects. Bull. Exp. Biol. Med. 2007;144(4):608-613. https://doi.org/10.1007/s10517-007-0387-1

    Article  CAS  PubMed  Google Scholar 

  3. Kim LB, Shkurupy VA, Putyatina AN. Age-Related Changes in the System Metalloproteinases/Tissue Metalloproteinase Inhibitors and Proteoglycan Components in Mouse Organs. Bull. Exp. Biol. Med. 2016;161(1):32-6. https://doi.org/10.1007/s10517-016-3338-x

    Article  CAS  PubMed  Google Scholar 

  4. Oganov VS, Bakulin AV, Novikov VE, Murashko LM, Kabitskaya OE. Changes in human bone tissue during space flight: possible mechanisms of osteopenia. Osteoporoz Osteopatii. 2005;8(2):2-7. Russian.

    Article  Google Scholar 

  5. Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007;446:1030-1037.

    Article  CAS  Google Scholar 

  6. Blaschke UK, Eikenberry EF, Hulmes DJ, Galla HJ, Bruckner P. Collagen XI nucleates self-assembly and limits lateral growth of cartilage fibrils. J. Biol. Chem. 2000;275(14):10,370-10,378.

    Article  CAS  Google Scholar 

  7. Buravkova LB, Gershovich PM, Gershovich JG, Grigor’ev AI. Mechanisms of gravitational sensitivity of osteogenic precursor cells. Acta Naturae. 2010;2(1):28-36.

    Article  CAS  Google Scholar 

  8. Corydon TJ, Mann V, Slumstrup L, Kopp S, Sahana J, Askou AL, Magnusson NE, Echegoyen D, Bek T, Sundaresan A, Riwaldt S, Bauer J, Infanger M, Grimm D. Reduced Expression of Cytoskeletal and Extracellular Matrix Genes in Human Adult Retinal Pigment Epithelium Cells Exposed to Simulated Microgravity. Cell. Physiol. Biochem. 2016;40(1-2):1-17.

    Article  CAS  Google Scholar 

  9. Kraus A, Luetzenberg R, Abuagela N, Hollenberg S, Infanger M. Spheroid formation and modulation of tenocyte-specific gene expression under simulated microgravity. Muscles Ligaments Tendons J. 2018;7(3):411-417. https://doi.org/10.11138/mltj/2017.7.3.411

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li G, Yi S, Yang F, Zhou Y, Ji Q, Cai J, Mei Y. Identification of mutant genes with high-frequency, high-risk, and high-expression in lung adenocarcinoma. Thorac. Cancer. 2014;5(3):211-218. https://doi.org/10.1111/1759-7714.12080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li L, Zhang C, Chen JL, Hong FF, Chen P, Wang JF. Effects of simulated microgravity on the expression profiles of RNA during osteogenic differentiation of human bone marrow mesenchymal stem cells. Cell. Prolif. 2019;52(2):e12539. https://doi.org/10.1111/cpr.12539

  12. Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell. Biol. 2004;16(5):558-564.

    Article  CAS  Google Scholar 

  13. Paiva KBS, Maas CS, Dos Santos PM, Granjeiro JM, Letra A. Extracellular Matrix Composition and Remodeling: Current Perspectives on Secondary Palate Formation, Cleft Lip/Palate, and Palatal Reconstruction. Front Cell. Dev. Biol. 2019;7:340. https://doi.org/10.3389/fcell.2019.00340

    Article  PubMed  PubMed Central  Google Scholar 

  14. Probstmeier R, Pesheva P. Tenascin-C inhibits beta1 integrindependent cell adhesion and neurite outgrowth on fibronectin by a disialoganglioside-mediated signaling mechanism. Glycobiology. 1999;9(2):101-114.

    Article  CAS  Google Scholar 

  15. Van Loon J. Some history and use of the Random Positioning Machine, RPM, in gravity related research. Advances in Space Research. 2007;39(7):1161-1165. https://doi.org/10.1016/j.asr.2007.02.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Zhivodernikov.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 170, No. 8, pp. 201-204, August, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhivodernikov, I.V., Ratushnyy, A.Y., Matveeva, D.K. et al. Extracellular Matrix Proteins and Transcription of Matrix-Associated Genes in Mesenchymal Stromal Cells during Modeling of the Effects of Microgravity. Bull Exp Biol Med 170, 230–232 (2020). https://doi.org/10.1007/s10517-020-05040-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-05040-z

Key Words

Navigation