Skip to main content

Advertisement

Log in

Manganese Oxide Nanoparticles Inhibit the Growth of Subcutaneous U-87MG Glioblastoma Xenografts in Immunodeficient Mouse

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Our previous study demonstrated that manganese oxide nanoparticles (MnO NP) selectively destroyed U-87MG and U251 human glioblastoma cells in vitro. MnO NP were synthesized and studied by electron microscopy. Their antitumor properties were studied in vivo on the model of immunodeficient SCID mice with subcutaneous xenografts of U-87MG human glioblastoma. The mice were injected subcutaneously with MnO NP in doses of 0.96 and 1.92 mg/kg (calculated for Mn) 3 days a week over 3 weeks. In was shown that MnO NP in these doses significantly suppressed the growth of U-87MG glioblastoma xenografts: on day 21 from the start of the treatment, the tumor growth inhibition index was 61.1 and 99.22%, respectively. These results indicate the necessity of the further studies of MnO NP as a potential oncolytic agent for the therapy of human glioblastomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arvizo RR, Miranda OR, Moyano DF, Walden CA, Giri K, Bhattacharya R, Robertson JD, Rotello VM, Reid JM, Mukherjee P. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One. 2011;6(9):e24374. doi: https://doi.org/10.1371/journal.pone.0024374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008;14(5):1310-1316.

    Article  CAS  Google Scholar 

  3. Frosina G. Limited advances in therapy of glioblastoma trigger re-consideration of research policy. Crit. Rev. Oncol. Hematol. 2015;96(2):257-261.

    Article  Google Scholar 

  4. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology. 2008;23(19):295103. doi: https://doi.org/10.1088/0957-4484/19/29/295103

    Article  CAS  Google Scholar 

  5. Hao Y, Wang L, Zhang B, Zhao H, Niu M, Hu Y, Zheng C, Zhang H, Chang J, Zhang Z, Zhang Y. Multifunctional nanosheets based on folic acid modified manganese oxide for tumor-targeting theranostic application. Nanotechnology. 2016;27(2):025101. doi: https://doi.org/10.1088/0957-4484/27/2/025101

    Article  CAS  PubMed  Google Scholar 

  6. Karim R, Palazzo C, Evrard B, Piel G. Nanocarriers for the treatment of glioblastomamultiforme: Current state-of-the-art. J. Control. Release. 2016;227:23-37.

    Article  CAS  Google Scholar 

  7. Konarev PV, Petoukhov MV, Volkov VV, Svergun DI. ATSAS 2.1, a program package for small-angle scattering data analysis. J. Appl. Cryst. 2006;39:277-286.

    Article  CAS  Google Scholar 

  8. Król A, Pomastowski P, Rafińska K, Railean-Plugaru V, Buszewski B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 2017;249:37-52.

    Article  Google Scholar 

  9. Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 2008;5(4):496-504.

    Article  CAS  Google Scholar 

  10. Nam J, Won N, Bang J, Jin H, Park J, Jung S, Jung S, Park Y, Kim S. Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliv. Rev. 2013;65(5):622-648.

    Article  CAS  Google Scholar 

  11. Raliya R, Singh Chadha T, Haddad K, Biswas P. Perspective on nanoparticle technology for biomedical use. Curr. Pharm. Des. 2016;22(17):81-90.

    Article  Google Scholar 

  12. Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 2010;7(9):1063-1077.

    Article  CAS  Google Scholar 

  13. Razumov IA, Zav’yalov EL, Troitskii SY, Romashchenko AV, Petrovskii DV, Kuper KE, Moshkin MP. Selective cytotoxicity of manganese nanoparticles against human glioblastoma cells. Bull. Exp. Biol. Med. 2017;163(4):561-565.

    Article  CAS  Google Scholar 

  14. Schladt TD, Schneider K, Shukoor MI, Natalio F, Bauer H, Tahir MN, Weber S, Schreiber LM, Schröder HC, Müller WEG, Tremel W. Highly soluble multifunctional MnO nanoparticles for simultaneous optical and MRI imaging and cancer treatment using photodynamic therapy. J. Mater. Chem. 2010;20:8297-8304.

    Article  CAS  Google Scholar 

  15. Smith L, Kuncic Z, Ostrikov K, Kumar S. Nanoparticles in cancer imaging and therapy. J. Nanomater. 2012;9:891318. doi: https://doi.org/10.1155/2012/891318

    Article  CAS  Google Scholar 

  16. Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 1989;24(3):148-154.

    Article  CAS  Google Scholar 

  17. Troitskii SYu, Chuvilin AL, Kochubei DI, Novgorodov BN, Kolomiichuk VN, Likholobov VA. Structure of polynuclear palladium(II) hydroxocomplexes formed upon alkaline hydrolysis of palladium(II) chloride complexes. Russ. Chem. Bull. 1995;44(10):1822-1826.

    Article  Google Scholar 

  18. Vinardell MP, Mitjans M. Antitumor activities of metal oxide nanoparticles. Nanomaterials. 2015;5(2):1004-1021.

    Article  CAS  Google Scholar 

  19. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release. 2015;200:138-157.

    Article  CAS  Google Scholar 

  20. Yang G, Xu L, Chao Y, Xu J, Sun X, Wu Y, Peng R, Liu Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017;8(1):902. doi: https://doi.org/10.1038/s41467-017-01050-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zavjalov EL, Razumov IA, Gerlinskaya LA, Romashchenko AV. In vivo MRI visualization of growth and morphology in the orthotopic xenotrasplantation U87 glioblastoma mouse SCID model. Russ. J. Genet. Appl. Res. 2016;6(4):448-453.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Razumov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 191-196, September, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razumov, I.A., Troitskii, S.Y., Solov’eva, O.I. et al. Manganese Oxide Nanoparticles Inhibit the Growth of Subcutaneous U-87MG Glioblastoma Xenografts in Immunodeficient Mouse. Bull Exp Biol Med 170, 148–153 (2020). https://doi.org/10.1007/s10517-020-05021-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-05021-2

Key Words

Navigation