Skip to main content
Log in

Morphological Analysis of the Respiratory Tract of Rats after Parenteral Administration of Silicon Dioxide Nanoparticles

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Morphological analysis of the respiratory tract of Wistar rats was performed after a single parenteral administration of 12-nm silicon dioxide nanoparticles (1 ml, 2 mg/ml, intravenously) was performed. On day 21 and in 2, 4, and 6 months after the administration of nanoparticles, the development of macrophage infiltration in the interstitium of the respiratory tract was demonstrated by histological and immunohistochemical methods. The pool of alveolar macrophages increased in 4 months after administration (p=0.004) and returned to the control values in 6 months. The number of mast cells did not significantly change at all stages of the experiment. Connective tissue remodeling in the interstitium of the respiratory tract was not observed throughout the observation period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mil’to IV. Liver, lung, kidney and spleen macrophages in rats after intravenous administration of the modified magnetite nanoparticles. Morfologiya. 2014;146(5):40-45. Russian.

    Google Scholar 

  2. Braakhuis HM, Park MV, Gosens I, De Jong WH, Cassee FR. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part. Fibre Toxicol. 2014;11:18. https://doi.org/10.1186/1743-8977-11-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carlander U, Li D, Jolliet O, Emond C, Johanson G. Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles. Int. J. Nanomedicine. 2016;11:625-640.

    Article  CAS  Google Scholar 

  4. Chan WT, Liu CC, Chiang Chiau JS, Tsai ST, Liang CK, Cheng ML, Lee HC, Yeung CY, Hou SY. In vivo toxicologic study of larger silica nanoparticles in mice. Int. J. Nanomedicine. 2017;12:3421-3432.

    Article  CAS  Google Scholar 

  5. Croissant JG, Brinker CJ. Biodegradable silica-based nanoparticles: dissolution kinetics and selective bond cleavage. Enzymes. 2018;43:181-214.

    Article  CAS  Google Scholar 

  6. Gardai SJ, Xiao YQ, Dickinson M, Nick JA, Voelker DR, Greene KE, Henson PM. By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell. 2003;115(1):13-23.

    Article  CAS  Google Scholar 

  7. Gongalsky M, Gvindzhiliia G, Tamarov K, Shalygina O, Pavlikov A, Solovyev V, Kudryavtsev A, Sivakov V, Osminkina LA. Radiofrequency hyperthermia of cancer cells enhanced by silicic acid ions released during the biodegradation of porous silicon nanowires. ACS Omega. 2019;4(6):10,662-10,669.

    Article  CAS  Google Scholar 

  8. Jessop F, Hamilton RF Jr, Rhoderick JF, Fletcher P, Holian A. Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity. Toxicol. Appl. Pharmacol. 2017;318:58-68.

    Article  CAS  Google Scholar 

  9. Lambrecht BN. Alveolar macrophage in the driver’s seat. Immunity. 2006;24(4):366-368.

    Article  CAS  Google Scholar 

  10. Leclerc L, Rima W, Boudard D, Pourchez J, Forest V, Bin V, Mowat P, Perriat P, Tillement O, Grosseau P, Bernache-Assollant D, Cottier M. Size of submicrometric and nanometric particles affect cellular uptake and biological activity of macrophages in vitro. Inhal. Toxicol. 2012;24(9):580-588.

    Article  CAS  Google Scholar 

  11. Lepekha LN, Alexandrova EA, Erokhina MV. In vitro effects of pulmonary surfactant on macrophage morphology and function. Bull. Exp. Biol. Med. 2012;152(4):489-493.

    Article  CAS  Google Scholar 

  12. Lewis DJ, Williams TC, Beck SL. Foamy macrophage responses in the rat lung following exposure to inhaled pharmaceuticals: a simple, pragmatic approach for inhaled drug development. J. Appl. Toxicol. 2014;34(4):319-331.

    Article  CAS  Google Scholar 

  13. Li H, Wu X, Yang B, Li J, Xu L, Liu H, Li S, Xu J, Yang M, Wei M. Evaluation of biomimetically synthesized mesoporous silica nanoparticles as drug carriers: Structure, wettability, degradation, biocompatibility and brain distribution. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;94:453-464.

    Article  CAS  Google Scholar 

  14. Yang M, Jing L, Wang J, Yu Y, Cao L, Zhang L, Zhou X, Sun Z. Macrophages participate in local and systemic inflammation induced by amorphous silica nanoparticles through intratracheal instillation. Int. J. Nanomedicine. 2016;11:6217-6228.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Sukhorukova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 170, No. 7, pp. 102-105, July, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yukina, G.Y., Polovnikov, I.V., Sukhorukova, E.G. et al. Morphological Analysis of the Respiratory Tract of Rats after Parenteral Administration of Silicon Dioxide Nanoparticles. Bull Exp Biol Med 170, 93–97 (2020). https://doi.org/10.1007/s10517-020-05011-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-05011-4

Key Words

Navigation