Skip to main content

Advertisement

Log in

A Comparative Study of the Pharmacokinetics of Bis- and Pentaphosphonic Acids Labeled with Gallium-68 in Rats with Experimental Model of Bone Callus

  • PHARMACOLOGY AND TOXICOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We analyzed biodistribution of 68Ga-labeled hydroxyethylidenediphosphonic acid (68Ga-HEDP) and diethylenetriaminepentakis(methylenephosphonic acid) (68Ga-DTPMP) in Wistar rats with experimental model of bone callus. It was shown that the content of 68Ga-DTPMP and 68Ga-HEDP in bone callus was ~1.5-fold higher than in intact femur. 68Ga-DTPMP was characterized by higher stability in vivo, higher uptake in the bone tissue, and lower uptake in others visceral organs in comparison with 68Ga-HEDP. Thus, 68Ga-DTPMP had more suitable pharmacokinetic properties than 68Ga-HEDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berchenko GN. Biology of fracture reparation and the influence of biocomplex nanostructured material KOLLAPAN on the activation of reparative osteogenesis. Med. Alfavit. Bol’nitsa. 2011;1:12-17. Russian.

  2. Petriev VM, Tishchenko VK, Krasikova RN. 18F-FDG and Other Labeled Glucose Derivatives for Use in Radionuclide Diagnosis of Oncological Diseases (Review). Pharm. Chem. J. 2016;50(4):209-220.

    CAS  Google Scholar 

  3. Tishchenko VK, Petriev VM, Mikhailovskaya AA, Smoryzanova OA, Ivanov SA, Kaprin AD. Pharmacokinetic properties of a new bone-seeking compound based on N,N,N’,N’-ethylenediaminetetrakis(methylene phosphonic acid) labeled with 68Ga in intact rats and rats with experimental model of bone callus. Radiatsiya Risk. 2019;28(4):108-117. Russian.

  4. Tishchenko VK, Petriev VM, Mikhailovskaya AA, Stepchenkova ED, Timoshenko VYu, Postnov AA, Zavestovskaya IN. Experimental Study of the Biodistribution of New Bone-Seeking Compounds Based on Phosphonic Acids and Gallium-68. Bull. Exp. Biol. Med. 2020;168(6):777-780. https://doi.org/10.1007/s10517-020-04800-1

    Article  CAS  PubMed  Google Scholar 

  5. Shiryaeva VK, Petriev VM, Bryukhanova AA, Smoryzanova OA, Skvortsov VG. Comparative analysis of pharmacokinetic characteristics of radiopharmaceuticals based on the monopotassium salt of 1- hydroxyethylidenediphosphonic acid labeled by 99mT9c and 188Re. Pharm. Chem. J. 2011;45(6):333-340.

    CAS  Google Scholar 

  6. Autio A, Virtanen H, Tolvanen T, Liljenbäck H, Oikonen V, Saanijoki T, Siitonen R, Käkelä M, Schüssele A, Teräs M, Roivainen A. Absorption, distribution and excretion of intravenously injected 68Ge/68Ga generator eluate in healthy rats, and estimation of human radiation dosimetry. EJNMMI Res. 2015;5. ID 40. https://doi.org/10.1186/s13550-015-0117-z

  7. Bernstein LR. Mechanisms of therapeutic activity for gallium. Pharmacol. Rev. 1998;50(4):665-682.

    CAS  PubMed  Google Scholar 

  8. Coleman RE. Metastatic bone disease: Clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev. 2001;27(3):165-176.

    CAS  PubMed  Google Scholar 

  9. Fazzalari NL. Bone fracture and bone fracture repair. Osteoporos. Int. 2011;22(6):2003-2006. https://doi.org/10.1007/s00198-011-1611-4

    Article  CAS  PubMed  Google Scholar 

  10. Kawabata H. Transferrin and transferrin receptors update. Free Radic. Biol. Med. 2019;133:46-54.

    CAS  PubMed  Google Scholar 

  11. Lange R, Ter Heine R, Knapp RF, de Klerk JM, Bloemendal HJ, Hendrikse NH. Pharmaceutical and clinical development of phosphonate-based radiopharmaceuticals for the targeted treatment of bone metastases. Bone. 2016;91:159-79. https://doi.org/10.1016/j.bone.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  12. Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone. 2016;86:119-130. https://doi.org/10.1016/j.bone.2016.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ogawa K, Saji H. Advances in drug design of radiometal-based imaging agents for bone disorders. Int. J. Mol. Imaging. 2011;2011:537687. https://doi.org/10.1155/2011/537687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rösch F. Past, present and future of 68Ge/68Ga generators. Appl. Radiat. Isot. 2013;76:24-30.

    PubMed  Google Scholar 

  15. Zaporowska-Stachowiak I, Łuczak J, Hoffmann K, Stachowiak K, Bryl W, Sopata M. Managing metastatic bone pain: New perspectives, different solutions. Biomed. Pharmacother. 2017;93:1277-1284. https://doi.org/10.1016/j.biopha.2017.07.023

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Tishchenko.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 169, No. 5, pp. 573-577, May, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tishchenko, V.K., Petriev, V.M., Kuzenkova, K.A. et al. A Comparative Study of the Pharmacokinetics of Bis- and Pentaphosphonic Acids Labeled with Gallium-68 in Rats with Experimental Model of Bone Callus. Bull Exp Biol Med 169, 644–647 (2020). https://doi.org/10.1007/s10517-020-04945-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-04945-z

Key Words

Navigation