Skip to main content
Log in

Creation of a Model of Co-Culturing of Sertoli-Like Mouse Cells with Spermatogonial Cells

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Sertoli-like cells is a cell population in the testes of adult mice capable of growth in culture and expressing many genes typical of Sertoli cells and supporting the development of germ cells in the gonad. A technique of co-culturing of Sertoli-like cells with spermatogonial cells was proposed that allows maintaining the growth and viability of germ cells and inducing their differentiation. This technique can provide the basis for obtaining fully differentiated germ cells in culture through using Sertoli-like cells as the supporting somatic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kulibin AYu, Malolina EA. A combination of small molecular inhibitors YAC increases expression levels of DMRT1 in the culture of Sertoli cells from the transitional zone of mouse testis. Geny Kletki. 2018;13(3):75-81. Russian.

  2. Malolina EA, Kulibin AY. Rete testis and the adjacent seminiferous tubules during postembryonic development in mice. Rus. J. Devel. Biol. 2017;48(6):385-392.

    Article  CAS  Google Scholar 

  3. Falciatori I, Lillard-Wetherell K, Wu Z, Hamra FK, Garbers DL. Deriving mouse spermatogonial stem cell lines. Methods Mol. Biol. 2008;450:181-192.

    Article  CAS  Google Scholar 

  4. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl Acad. Sci. USA. 2004;101(47):16,489-16,494.

    Article  CAS  Google Scholar 

  5. Kulibin AY, Malolina EA. Only a small population of adult Sertoli cells actively proliferates in culture. Reproduction. 2016;152(4):271-281.

    Article  CAS  Google Scholar 

  6. Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature. 2011;476:101-104.

    Article  CAS  Google Scholar 

  7. Medrano JV, Vilanova-Pérez T, Fornés-Ferrer V, Navarro-Gomezlechon A, Martínez-Triguero ML, García S, Gómez-Chacón J, Povo I, Pellicer A, Andrés MM, Novella-Maestre E. Influence of temperature, serum, and gonadotropin supplementation in short- and long-term organotypic culture of human immature testicular tissue. Fertil. Steril. 2018;110(6):1045-1057.

    Article  CAS  Google Scholar 

  8. Meng X, Lindahl M, Hyvönen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola H. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000;287:1489-1493.

    Article  CAS  Google Scholar 

  9. Muratori M, Baldi E. Effects of FSH on sperm DNA fragmentation: review of clinical studies and possible mechanisms of action. Front. Endocrinol. (Lausanne). 2018;9. ID 734. doi: https://doi.org/10.3389/fendo.2018.00734

  10. Raymond CS, Murphy MW, O’Sullivan MG, Bardwell VJ, Zarkower D. Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev. 2000;14(20):2587-2595.

    Article  CAS  Google Scholar 

  11. Saitou M, Miyauchi H. Gametogenesis from pluripotent stem cells. Cell Stem Cell. 2016;18(6):721-735.

    Article  CAS  Google Scholar 

  12. Sariola H, Immonen T. GDNF maintains mouse spermatogonial stem cells in vivo and in vitro. Methods Mol. Biol. 2008;450:127-135.

    Article  CAS  Google Scholar 

  13. Sato T, Katagiri K, Kubota Y, Ogawa T. In vitro sperm production from mouse spermatogonial stem cell lines using an organ culture method. Nat. Protoc. 2013;8(11):2098-2104.

    Article  CAS  Google Scholar 

  14. Sofikitis N, Pappas E, Kawatani A, Baltogiannis D, Loutradis D, Kanakas N, Giannakis D, Dimitriadis F, Tsoukanelis K, Georgiou I, Makrydimas G, Mio Y, Tarlatzis V, Melekos M, Miyagawa I. Efforts to create an artificial testis: culture systems of male germ cells under biochemical conditions resembling the seminiferous tubular biochemical environment. Hum. Reprod. Update. 2005;11(3):229-259.

    Article  CAS  Google Scholar 

  15. Zarkower D. DMRT genes in vertebrate gametogenesis. Curr. Top Dev. Biol. 2013;102:327-356.

    Article  CAS  Google Scholar 

  16. Zhang J, Hatakeyama J, Eto K, Abe S. Reconstruction of a seminiferous tubule-like structure in a 3 dimensional culture system of re-aggregated mouse neonatal testicular cells within a collagen matrix. Gen. Comp. Endocrinol. 2014;205:121-132.

    Article  CAS  Google Scholar 

  17. Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, Xie M, Liu M, Guo X, Zheng Y, Feng G, Shi Q, Zhao X. Y, Sha J, Zhou Q. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell. 2016;18(3):330-340.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kulibin.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 2, pp. 133-138, June, 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malolina, E.A., Kulibin, A.Y. Creation of a Model of Co-Culturing of Sertoli-Like Mouse Cells with Spermatogonial Cells. Bull Exp Biol Med 167, 584–589 (2019). https://doi.org/10.1007/s10517-019-04576-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-019-04576-z

Key Words

Navigation