Advertisement

Proliferative Activity of Colorectal Cancer Cells with Different Levels of CD133 Expression

  • A. M. GisinaEmail author
  • Ya. S. Kim
  • D. M. Potashnikova
  • A. V. Tvorogova
  • K. N. Yarygin
  • A. Yu. Lupatov
Article
  • 16 Downloads

We studied proliferative activity of colorectal cancer cells with different expression level of CD133 molecule associated with cancer stem cells phenotype. Analysis of BrdU incorporation into Caco-2 and HT-29 cell lines showed that the percentage of cells in the DNA synthesis phase in the CD133+/high population is higher than in CD133—/low population. The expression of proliferation marker Ki-67 and the percentage of Ki-67+ cells were also higher in the CD133+/high population. Colorimetric analysis with crystal violet dye showed that the number of cells after 10-days culturing was higher in the CD133+/high population in both cell lines. These findings suggest that cells with high level of CD133 expression are characterized by higher proliferative activity, which can contribute to the tumor progression.

Key Words

CD133 cell proliferation Caco-2 HT-29 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Suvorov RE, Kim YS, Gisina AM, Chiang JH, Yarygin KN, Lupatov AY. Surface Molecular Markers of Cancer Stem Cells: Computation Analysis of Full-Text Scientific Articles. Bull. Exp. Biol. Med. 2018;166(1):135-140.CrossRefGoogle Scholar
  2. 2.
    Batlle E, Clevers H. Cancer stem cells revisited. Nat. Med.2017; 23(10):1124-1134.CrossRefGoogle Scholar
  3. 3.
    Chang PH, Sekine K, Chao HM, Hsu SH, Chern E. Chitosan promotes cancer progression and stem cell properties in association with Wnt signaling in colon and hepatocellular carcinoma cells. Sci. Rep. 2017;8. ID 45751. doi:  https://doi.org/10.1038/srep45751
  4. 4.
    Corbeil D, Röper K, Fargeas C.A, Joester A, Huttner W.B. Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic. 2001;2(2):82-91.CrossRefGoogle Scholar
  5. 5.
    Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin. Transl. Med. 2018;7(1):18. doi:  https://doi.org/10.1186/s40169-018-0198-1.CrossRefGoogle Scholar
  6. 6.
    Jang JW, Song Y, Kim SH, Kim J, Seo HR. Potential mechanisms of CD133 in cancer stem cells. Life Sci. 2017;184:25-29.CrossRefGoogle Scholar
  7. 7.
    Kim YS, Kaidina AM, Chiang JH, Yarygin KN, Lupatov AY. Cancer stem cell molecular markers verified in vivo. Biomed. Khim. 2016;62(3):228-238.CrossRefGoogle Scholar
  8. 8.
    Mak AB, Nixon AM, Kittanakom S, Stewart JM, Chen GI, Curak J, Gingras AC, Mazitschek R, Neel BG, Stagljar I, Moffat J. Regulation of CD133 by HDAC6 promotes β-catenin signaling to suppress cancer cell differentiation. Cell Rep. 2012;2(4):951-963.CrossRefGoogle Scholar
  9. 9.
    Röper K, Corbeil D, Huttner WB. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat. Cell Biol. 2000;2(9):582-592.CrossRefGoogle Scholar
  10. 10.
    Zacchigna S, Oh H, Wilsch-Bräuninger M, Missol-Kolka E, Jászai J, Jansen S, Tanimoto N, Tonagel F, Seeliger M, Huttner WB, Corbeil D, Dewerchin M, Vinckier S, Moons L, Carmeliet P. Loss of the cholesterol-binding protein prominin-1/CD133 causes disk dysmorphogenesis and photoreceptor degeneration. J. Neurosci. 2009;29(7):2297-2308.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. M. Gisina
    • 1
    Email author
  • Ya. S. Kim
    • 1
  • D. M. Potashnikova
    • 2
  • A. V. Tvorogova
    • 2
  • K. N. Yarygin
    • 1
  • A. Yu. Lupatov
    • 1
  1. 1.V. N. Orekhovich Research Institute of Biomedical ChemistryMoscowRussia
  2. 2.M. V. Lo-monosov Moscow State UniversityMoscowRussia

Personalised recommendations