Skip to main content

Advertisement

Log in

Cerebral Blood Flow in SHR Rats after Transplantation of Mesenchymal Stem Cells

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Intracerebral transplantation of mesenchymal stem cells to 6- and 12-month-old SHR rats induced angiogenesis in the pia mater. In 6-months-old SHR rats, perfusion in the brain tissue after cell transplantation considerably increased, while in 12-month-old rats it remained practically unchanged. We also observed marked activation of regulatory processes in the cerebral vascular system, most pronounced in 12-month-old rats. Neurogenic and myogenic tone of cerebral vessels increased significantly, while endothelium-dependent tone slightly decreased. The increase in neurogenic and myogenic tone of blood vessels in SHR rats at the age of 6 and 12 months after transplantation of stem cells can be explained by the formation of new smooth muscle cells in the pre-existing arteries walls. Greater muscle mass developed stronger force and contributed to narrowing of the arterial lumen, as a result, there was no increase in blood flow despite the downstream angiogenesis. A slight decrease in endothelium-dependent tone can be explained by increased production of vasodilators by newly formed endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lobov GI, Gurkov AS. Modulation of blood flow in the microvasculature of fingers after the formation a radiocephalic arteriovenous fistula. Nefrologiya Dializ. 2014;16(3):364-371. Russian.

    Google Scholar 

  2. Sokolova IB, Sergeev IV, Skorobogataya EV, Ufimtseva AN, Polyntsev DG, Dvoretskii DP. Effect of Transplantation of Mesenchymal Stem Cells on the Density of Pial Microvascular Network in Spontaneously Hypertensive Rats of Different Age. Bull. Exp. Biol. Med. 2017;163(1):129-132.

    Article  CAS  PubMed  Google Scholar 

  3. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ. Res. 2005;97(6):512-523.

    Article  CAS  PubMed  Google Scholar 

  4. Bronckaers A, Hilkens P, Martens W, Gervois P, Ratajczak J, Struys T, Lambrichts I. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol. Ther. 2014;143(2):181-196.

    Article  CAS  PubMed  Google Scholar 

  5. da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008;26(9):2287-2299.

    Article  PubMed  Google Scholar 

  6. de Oliveira LF, Almeida TR, Ribeiro Machado MP, Cuba MB, Alves AC, da Silva MV, Rodrigues Júnior V, Dias da Silva VJ. Priming mesenchymal stem cells with endothelial growth medium boosts stem cell therapy for systemic srterial hypertension. Stem Cells Int. 2015;2015. ID 685383. doi: https://doi.org/10.1155/2015/685383.

  7. Heinert G, Casadei B, Paterson DJ. Hypercapnic cerebral blood flow in spontaneously hypertensive rats. J. Hypertens. 1998;16(10):1491-1498.

    Article  CAS  PubMed  Google Scholar 

  8. Lee TH, Liu HL, Yang ST, Yang JT, Yeh MY, Lin JR. Effects of aging and hypertension on cerebral ischemic susceptibility: evidenced by MR diffusion-perfusion study in rat. Exp. Neurol. 2011;227(2):314-321.

    Article  PubMed  Google Scholar 

  9. Li Y, Shen Q, Huang S, Li W, Muir ER, Long JA, Duong TQ. Cerebral angiography, blood flow and vascular reactivity in progressive hypertension. Neuroimage. 2015;111:329-337.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Meneses A, Hong E. Spontaneously hypertensive rats: a potential model to identify drugs for treatment of learning disorders. Hypertension. 1998 Vol. 31(4):968-972.

    Article  CAS  PubMed  Google Scholar 

  11. Sabbatini M, Strocchi P, Vitaioli L, Amenta F. Microanatomical changes of intracerebral arteries in spontaneously hypertensive rats: a model of cerebrovascular disease of the elderly. Mech. Ageing Dev. 2001;122(12):1257-1268.

    Article  CAS  PubMed  Google Scholar 

  12. Tayebati SK, Tomassoni D, Amenta F. Spontaneously hypertensive rat as a model of vascular brain disorder: microanatomy, neurochemistry and behavior. J. Neurol. Sci. 2012;322(1-2):241-249.

    Article  CAS  PubMed  Google Scholar 

  13. Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension. 2004;44(3):248-252.

    Article  CAS  PubMed  Google Scholar 

  14. Wang L, Mu Z, Lin X, Geng J, Xiao TQ, Zhang Z, Wang Y, Guan Y, Yang GY. Simultaneous imaging of cerebrovascular structure and function in hypertensive rats using synchrotron radiation angiography. Front. Aging Neurosci. 2017;9:359. doi: https://doi.org/10.3389/fnagi.2017.00359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou Q, Dong Y, Huang L, Yang S, Chen W. Study of cerebrovascular reserve capacity by magnetic resonance perfusion weighted imaging and photoacoustic imaging. Magn. Reson. Imaging. 2009;27(2):155-162.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Lobov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 275-280, December, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolova, I.B., Lobov, G.I. Cerebral Blood Flow in SHR Rats after Transplantation of Mesenchymal Stem Cells. Bull Exp Biol Med 166, 586–590 (2019). https://doi.org/10.1007/s10517-019-04396-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-019-04396-1

Key Words

Navigation