Skip to main content

Advertisement

Log in

Application of Adeno-Associated Virus Vectors for Engineering SCF-Containing Extracellular Vesicles of Mesenchymal Stromal Cells

  • Cell Technologies in Biology and Medicine
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Mesenchymal stromal cells from rat adipose tissue were transduced with adeno-associated viral (AAV) vector encoding stem cell factor SCF that stimulates proliferation of cardiac c-kit+ cells and improved cardiac function and survival of animals after myocardial infarction. Extracellular vesicles isolated from the medium conditioned by mesenchymal stromal cells by ultracentrifugation were characterized by Western blotting, transmission electron microscopy, nanoparticle tracking analysis, immunostaining, and mass spectrometry analysis. Using proteomic analysis, we identified transgenic SCF in extracellular vesicles released by AAV-modified mesenchymal stromal cells and detected some proteins specific of extracellular vesicles secreted by transduced cells. Extracellular vesicles from AAV-transduced mesenchymal stromal cells could be used for delivery of transgenic proteins as they were readily endocytosed by both cardiosphere-derived cells and cardiac-progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dergilev KV, Rubina KA, Sysoeva VJ, Akchurin RS, Tkachuk VA, Parfenova EV. Patent RU No. 2542964. Method for producing progenitor cells of myocardium. Bull. No. 6. Published February 27, 2015.

  2. Armstrong JP, Holme MN, Stevens MM. Re-engineering extracellular vesicles as smart nanoscale therapeutics. ACS Nano. 2017;11(1):69-83.

  3. Cheng L, Zhang K, Wu S, Cui M, Xu T. Focus on mesenchymal stem cell-derived exosomes: opportunities and challenges in cell-free therapy. Stem Cells Int. 2017;2017. ID 6305295. doi: https://doi.org/10.1155/2017/6305295.

  4. Ciardiello C, Cavallini L, Spinelli C, Yang J, Reis-Sobreiro M, de Candia P, Minciacchi VR, Di Vizio D. Focus on extracellular vesicles: new frontiers of cell-to-cell communication in cancer. Int. J. Mol. Sci. 2016;17(2):175. doi: https://doi.org/10.3390/ijms17020175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fazel S, Chen L, Weisel RD, Angoulvant D, Seneviratne C, Fazel A, Cheung P, Lam J, Fedak PW, Yau TM, Li RK. Cell transplantation preserves cardiac function after infarction by infarct stabilization: augmentation by stem cell factor. J. Thorac. Cardiovasc. Surg. 2005;130(5):1310.

    Article  PubMed  Google Scholar 

  6. Gilligan KE, Dwyer RM. Engineering exosomes for cancer therapyn. Int. J. Mol. Sci. 2017;18(6). pii: E1122. doi: https://doi.org/10.3390/ijms18061122.

  7. He JG, Li HR, Han JX, Li BB, Yan D, Li HY, Wang P, Luo Y. GATA-4-expressing mouse bone marrow mesenchymal stem cells improve cardiac function after myocardial infarction via secreted exosomes. Sci. Rep. 2018;8(1):9047. doi: https://doi.org/10.1038/s41598-018-27435-9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ishikawa K, Fish K, Aguero J, Yaniz-Galende E, Jeong D, Kho C, Tilemann L, Fish L, Liang L, Eltoukhy AA, Anderson DG, Zsebo K, Costa KD, Hajjar RJ. Stem cell factor gene transfer improves cardiac function after myocardial infarction in swine. Circ. Heart Fail. 2015;8(1):167-174.

    Article  CAS  PubMed  Google Scholar 

  9. Kang K, Ma R, Cai W, Huang W, Paul C, Liang J, Wang Y, Zhao T, Kim HW, Xu M, Millard RW, Wen Z, Wang Y. Exosomes secreted from CXCR4 overexpressing mesenchymal stem cells promote cardioprotection via akt signaling pathway following myocardial infarction. Stem Cells Int. 2015;2015. ID 659890. doi: https://doi.org/10.1155/2015/659890.

  10. Ma J, Zhao Y, Sun L, Sun X, Zhao X, Sun X, Qian H, Xu W, Zhu W. Exosomes derived from akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl. Med. 2017;6(1):51-59.

    Article  CAS  PubMed  Google Scholar 

  11. Meléndez-Hevia E, De Paz-Lugo P, Cornish-Bowden A, Cárdenas ML. A weak link in metabolism: the metabolic capacity for glycine biosynthesis does not satisfy the need for collagen synthesis. J. Biosci. 2009;34(6):853-872.

    Article  CAS  PubMed  Google Scholar 

  12. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas P.D. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucl. Acids Res. 2017;45(D1):D183-D189.

    Article  CAS  PubMed  Google Scholar 

  13. Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV:progress and challenges. Nat. Rev. Genet. 2011.Vol. 12(5):341-355.

    Article  CAS  PubMed  Google Scholar 

  14. Ohtsuka M, Takano H, Zou Y, Toko H, Akazawa H, Qin Y, Suzuki M, Hasegawa H, Nakaya H, Komuro I. Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization. FASEB J. 2004.Vol. 18(7):851-853.

    Article  CAS  PubMed  Google Scholar 

  15. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl Acad. Sci. USA. 2001;98(18):10,344-10,349.

    Article  CAS  Google Scholar 

  16. Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35(4):851-858.

    Article  CAS  PubMed  Google Scholar 

  17. Xiang FL, Lu X, Hammoud L, Zhu P, Chidiac P, Robbins J, Feng Q. Cardiomyocyte-specific overexpression of human stem cell factor improves cardiac function and survival after myocardial infarction in mice. Circulation. 2009;120(12):1065-1074.

    Article  CAS  PubMed  Google Scholar 

  18. Yang Y, Ye Y, Su X, He J, Bai W, He X. MSCs-Derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Front. Cell Neurosci. 2017;11:55. doi: https://doi.org/10.3389/fncel.2017.00055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yaniz-Galende E, Chen J, Chemaly E, Liang L, Hulot JS, Mc-Collum L, Arias T, Fuster V, Zsebo KM, Hajjar RJ. Stem cell factor gene transfer promotes cardiac repair after myocardial infarction via in situ recruitment and expansion of c-kit+ cells. Circ. Res. 2012;111(11):1434-1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu B, Kim HW, Gong M, Wang J, Millard RW, Wang Y, Ashraf M, Xu M. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int. J. Cardiol. 2015;182:349-360.

    Article  PubMed  Google Scholar 

  21. Zubkova ES, Beloglazova IB, Makarevich PI, Boldyreva MA, Sukhareva OY, Shestakova MV, Dergilev KV, Parfyonova YV, Menshikov MY. Regulation of adipose tissue stem cells angiogenic potential by tumor necrosis factor-alpha. J. Cell. Biochem. 2016;117(1):180-196.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Zubkova.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 211-219, December, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubkova, E.S., Beloglazova, I.B., Evtushenko, E.G. et al. Application of Adeno-Associated Virus Vectors for Engineering SCF-Containing Extracellular Vesicles of Mesenchymal Stromal Cells. Bull Exp Biol Med 166, 527–534 (2019). https://doi.org/10.1007/s10517-019-04387-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-019-04387-2

Key Words

Navigation