Skip to main content

Influence of Magnetite Nanoparticles and Quantum Dots on the Expression of Reference Genes in Peripheral Blood Cells

We studied the influence of magnetite nanoparticles (FeO•Fe2O3) and quantum dots (CdSe/ZnS coated with mercaptopropionic acid) on the expression of 5 common reference genes (BA, B2M, PPIA, UBC, and YWHAZ) in peripheral blood cells from 20 volunteers by reverse transcription PCR method. The stability of the expression of reference genes varied depending of the cells type and chemical structure of nanoparticles. The level of YWHAZ mRNA after exposure by nanoparticles demonstrated highest stability in lymphocytes, neutrophils, and monocytes. Stability of YWHAZ expression was confirmed by Western blotting. Our findings suggest that YWHAZ is the most suitable as the reference gene.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Novikov DV, Fomina SG, Gurina NN, Perenkov AD, Krasnogorova NV, Shumilova SV, Lukovnikova LB, Novikov VV, Karaulov AV. The correlation of expression of MUC1, ICAM1, IL32, FcyR3A and FoxP3 in tumor niduses of patients with breast cancer. Klin. Lab. Diagnost. 2017;62(1):35-39. Russian.

    Google Scholar 

  2. 2.

    Andersen CL, Jensen JL, Ørntoft TF. Normalization of realtime quantitative reverse transcription-PCR data: a modelbased variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245-5250.

    CAS  Article  Google Scholar 

  3. 3.

    Kaszubowska L, Wierzbicki P.M, Karsznia S, Damska M, Ślebioda TJ, Foerster J, Kmieć Z. Optimal reference genes for qPCR in resting and activated human NK cells — Flow cytometric data correspond to qPCR gene expression analysis. J. Immunol. Methods. 2015;422:125-129.

  4. 4.

    Ledderose C, Heyn J, Limbeck E, Kreth S. Selection of reliable reference genes for quantitative real-time PCR in human T cells and neutrophils. BMC Res. Notes. 2011;4:427. doi: https://doi.org/10.1186/1756-0500-4-427.

  5. 5.

    Li X, Yang Q, Bai J, Xuan Y, Wang Y. Evaluation of eight reference genes for quantitative polymerase chain reaction analysis in human T lymphocytes co-cultured with mesenchymal stem cells. Mol. Med. Rep. 2015;12(5):7721-7727.

    CAS  Article  Google Scholar 

  6. 6.

    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) Method. Methods. 2001;25(4):402-408.

    CAS  Article  Google Scholar 

  7. 7.

    Oturai DB, Søndergaard HB, Börnsen L, Sellebjerg F, Christensen JR. Identification of suitable reference genes for peripheral blood mononuclear cell subset studies in multiple sclerosis. Scand. J. Immunol. 2016;83(1):72-80.

    CAS  Article  Google Scholar 

  8. 8.

    Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36.

    Article  Google Scholar 

  9. 9.

    Piehler AP, Grimholt RM, Ovstebø R, Berg JP. Gene expression results in lipopolysaccharide-stimulated monocytes depend significantly on the choice of reference genes. BMC Immunol. 2010;11:21. doi: https://doi.org/10.1186/1471-2172-11-21.

  10. 10.

    Pleskova SN, Pudovkina EE, Mikheeva ER, Gorshkova EN. Interactions of quantum dots with donor blood erythrocytes in vitro. Bull. Exp. Biol. Med. 2014;156(3):384-388.

    CAS  Article  Google Scholar 

  11. 11.

    Sanabria NM, Gulumian M. The presence of residual gold nanoparticles in samples interferes with the RT-qPCR assay used for gene expression profiling. J. Nanobiotechnology. 2017;15(1):72. doi: https://doi.org/10.1186/s12951-017-0299-9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett. 2018;13(1):44. doi: https://doi.org/10.1186/s11671-018-2457-x.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Usarek E, Barańczyk-Kuźma A, Kaźmierczak B, Gajewska B, Kuźma-Kozakiewicz M. Validation of qPCR reference genes in lymphocytes from patients with amyotrophic lateral sclerosis. PLoS One. 2017;12(3):e0174317. doi: https://doi.org/10.1371/journal.pone.0174317.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Valceckiene V, Kontenyte R, Jakubauskas A, Griskevicius L. Selection of reference genes for quantitative polymerase chain reaction studies in purified B cells from B cell chronic lymphocytic leukaemia patients. Br. J. Haematol. 2010;151(3):232-238.

    CAS  Article  Google Scholar 

  15. 15.

    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7). RESEARCH0034.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Karaulov.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 166, No. 8, pp. 226-229, August, 2018

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fomina, S.G., Novikov, D.V., Krasnogorova, N.V. et al. Influence of Magnetite Nanoparticles and Quantum Dots on the Expression of Reference Genes in Peripheral Blood Cells. Bull Exp Biol Med 166, 264–267 (2018). https://doi.org/10.1007/s10517-018-4329-x

Download citation

Key Words

  • nanoparticles
  • quantum dots
  • reference gene
  • leukocytes
  • peripheral blood