Skip to main content
Log in

Changes in the Expression of Calbindin and Calretinin in Interneurons of the Spinal Dorsal Horns Under Conditions of Antiorthostatic Suspension in Mice

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

In female C57Bl/6 mice subjected to antiorthostatic suspension of the hind limbs for 30 days, calbindin- and calretinin-containing interneurons of the dorsal horns of the upper thoracic segments of the spinal cord were studied using immunohistochemical methods. In mice of the experimental group, cross-sectional area of calbindin- and calretinin-containing interneurons decreased in laminae I, II, and III and increased in laminae IV and V and in the region of the medial edge of the dorsal horn. After antiorthostatic suspension, expression of calretinin decreased in interneurons of laminae I and II and calbindin expression increased in the interneurons of laminae III, IV, and V. The total number of interneurons in laminae of the spinal cord detected by Nissl staining in the control and experimental groups remained unchanged. After antiorthostatic suspension and in control group, number of interneurons immunoreactive for calbindin and calretinin was maximum in lamina II and minimum in laminae IV and V and in the region of the medial edge of the spinal dorsal horn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Islamov RR, Tyapkina OV, Nikolskij EE, Kozlovskaya IB, Grigor’ev AI. The role of spinal motoneurons in the mechanisms of hupogravita-tional motor syndrome development. Ross. Fiziol. Zh. 2013;99(3):281-293. Russian.

    CAS  Google Scholar 

  2. Porseva VV, Shilkin VV, Strelkov AA, Masliukov PM. Subpopulation of calbindin-immunoreactive innrerneurons in toe dorsal horn of toe mice spinal cord. Tsitologiya. 2014;56(8):612-618. Russian.

    CAS  Google Scholar 

  3. Porseva VV, Shilkin VV, Strelkov AA, Moiseyev KYu, Krasnov IB, Maslyukov PM. Changes in calbindin-containing neurons in the dorsal horn of the spinal cord of mice after space flight in Bion-M1 biosatellite. Morfologiya. 2017;151(1):20-25. Russian.

    Google Scholar 

  4. Anelli R, Heckman CJ. The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord. Neurocytol. 2005;34(6):369-385.

    Article  CAS  Google Scholar 

  5. Kim JJ, Chang IY, Chung YY, Yoon SP, Moon JS, Yoon HJ. Immunohistochemical studies on the calbindin D-28K and parvalbumin positive neurons in the brain stem and spinal cord after transection of spinal cord of rats. Korean J. Phys. Anthropol. 2002;15(4):305-329.

    Article  Google Scholar 

  6. Lu Y, Perl ER. Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). J. Neurosci. 2005;25(15):3900-3907.

    Article  CAS  Google Scholar 

  7. Merkulyeva N, Veshchitskii A, Makarov F, Gerasimenko Y, Musienko P. Distribution of 28 kDa calbindin-immunopositive neurons in the cat spinal cord. Front. Neuroanat. 2016;9:166. doi:https://doi.org/10.3389/fnana.2015.00166.

  8. Molander C, Xu Q, Rivero-Melian C, Grant G. Cytoarchitectonic organization of the spinal cord in the rat: II. The cervical and upper thoracic cord. J. Comp. Neurol. 1989;289(3):375-385.

    Article  CAS  Google Scholar 

  9. Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects. J. Appl. Physiol. 2002;92(4):1367-1377.

    Article  Google Scholar 

  10. Morona R, López JM, González A. Calbindin-D28k and calretinin immunoreactivity in the spinal cord of the lizard Gekko gecko: Colocalization with choline acetyltransferase and nitric oxide synthase. Brain Res. Bull. 2006;69(5):519-534.

    Article  CAS  Google Scholar 

  11. Porseva VV, Shilkin VV, Krasnov IB, Masliukov PM. Calbindin-D28k immunoreactivity in the mice thoracic spinal cord after space flight. Int. J. Astrobiol. 2015;14(4):555-562. doi:https://doi.org/10.1017/S1473550415000130.

    Article  CAS  Google Scholar 

  12. Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. 2010;11(12):823-836.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Porseva.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 166, No. 7, pp. 26-29, July, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porseva, V.V., Emanuilov, A.I. & Masliukov, P.M. Changes in the Expression of Calbindin and Calretinin in Interneurons of the Spinal Dorsal Horns Under Conditions of Antiorthostatic Suspension in Mice. Bull Exp Biol Med 166, 22–25 (2018). https://doi.org/10.1007/s10517-018-4280-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4280-x

Key Words

Navigation