Skip to main content

Advertisement

Log in

Expression of Hif-1α, Nf-κb, and Vegf Genes in the Liver and Blood Serum Levels of HIF-1α, Erythropoietin, VEGF, TGF-β, 8-Isoprostane, and Corticosterone in Wistar Rats with High and Low Resistance to Hypoxia

  • GENETICS
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the expression of Hif-1α, Nf-κb, and Vegf genes in the liver and serum levels of HIF-1α, erythropoietin, VEGF, TGF-β, 8-isoprostane, and corticosterone in Wistar rats with different resistance to hypoxia in 5 and 90 min after acute exposure to hypobaric hypoxia. In 5 min after hypoxic exposure, Hif-1α expression in the liver and serum levels of erythropoietin, VEGF, and TGF-β in high-resistant rats were higher than in low-resistant animals. In highresistant rats, the increment in expression of Nf-κb gene responsible for the control over the inflammatory processes was more pronounced than in low-resistant animals. In 90 min after hypoxic exposure, the serum levels of HIF-1α, erythropoietin, VEGF, and TGF-β returned to normal in high-resistant rats, while in low-resistant animals, an increase in 8-isoprostane and TGF-β concentrations was observed. The rats with different resistance to hypoxia were characterized by different changes in biomolecular parameters determining predilection to inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agadzhanyan NA, Khachatur’yan ML, Panchenko LA. Effect of acute hypoxia on resistance to hypoxia in rats. Bull. Exp. Biol. Med. 1999;127(6):567-570.

    Article  Google Scholar 

  2. Luk’yanova LD. Molecular mechanisms of tissue hypoxia and adaptation. Fiziol. Zh. 2003;49(3):17-35. Russian.

    Google Scholar 

  3. Lukyanova LD, Kirova YI. Effect of hypoxic preconditioning on free radical processes in tissues of rats with different resistance to hypoxia. Bull. Exp. Biol. Med. 2011;151(3):292-296.

    Article  CAS  Google Scholar 

  4. Belaiba RS, Bonello S, Zähringer C, Schmidt S, Hess J, Kietzmann T, Görlach A. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol. Biol. Cell. 2007;18(12):4691-4697.

    Article  CAS  Google Scholar 

  5. Fandrey J. Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004;286(6):R977-R988.

    Article  CAS  Google Scholar 

  6. Ghosh D, Kumar R, Pal K. Individual variation in response to simulated hypoxic stress of rats. Indian J. Exp. Biol. 2012; 50(10):744-748.

    PubMed  Google Scholar 

  7. Hirota K. Involvement of hypoxia-inducible factors in the dysregulation of oxygen homeostasis in sepsis. Cardiovasc. Hematol. Disord. Drug Targets. 2015;15(1):29-40.

    Article  CAS  Google Scholar 

  8. Jain K, Suryakumar G, Prasad R, Ganju L. Upregulation of cytoprotective defense mechanisms and hypoxia-responsive proteins imparts tolerance to acute hypobaric hypoxia. High Alt. Med. Biol. 2013;14(1):65-77.

    Article  CAS  Google Scholar 

  9. Jiang Y, Dai A, Li Q, Hu R. Hypoxia induces transforming growth factor-beta1 gene expression in the pulmonary artery of rats via hypoxia-inducible factor-1alpha. Acta Biochim. Biophys. Sin. (Shanghai). 2007;39(1):73-80.

    CAS  PubMed  Google Scholar 

  10. Liu RM, Desai LP. Recirpocal regulation of TGF-β and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol. 2015;6:565-577.

    Article  CAS  Google Scholar 

  11. Padhy G, Sethy NK, Ganju L, Bhargava K. Abundance of plasma antioxidant proteins confers tolerance to acute hypobaric hypoxia exposure. High Alt. Med. Biol. 2013;14(3):289-297.

    Article  CAS  Google Scholar 

  12. Pialoux V, Hanly PJ, Foster GE, Brugniaux JV, Beaudin AE, Hartmann SE, Pun M, Duggan CT, Poulin MJ. Effects of exposure to intermittent hypoxia on oxidative stress and acute hypoxic ventilatory response in humans. Am. J. Respir. Crit. Care Med. 2009;180(10):1002-1009.

    Article  CAS  Google Scholar 

  13. Sánchez-Elsner T, Ramírez JR, Sanz-Rodriguez F, Varela E, Bernabéu C, Botella LM. A cross-talk between hypoxia and TGF-beta orchestrates erythropoietin gene regulation through SP1 and Smads. J. Mol. Biol. 2004;336(1):9-24.

    Article  Google Scholar 

  14. Semenza G.L. Life with oxygen. Science. 2007;318:62-64.

    Article  CAS  Google Scholar 

  15. Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DA, Bauer C, Gassmann M, Candinas D. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J. 2001;15(13):2445-2453.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Dzhalilova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 165, No. 6, pp. 742-747, June, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhalilova, D.S., Diatroptov, M.E., Tsvetkov, I.S. et al. Expression of Hif-1α, Nf-κb, and Vegf Genes in the Liver and Blood Serum Levels of HIF-1α, Erythropoietin, VEGF, TGF-β, 8-Isoprostane, and Corticosterone in Wistar Rats with High and Low Resistance to Hypoxia. Bull Exp Biol Med 165, 781–785 (2018). https://doi.org/10.1007/s10517-018-4264-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4264-x

Key Words

Navigation