Skip to main content
Log in

Neuroprotective Lithium Salts Protect Pancreatic β-Сells from Damage

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied antidiabetic effects and cytoprotective activity of two lithium salts (lithium chloride and lithium carbonate) on the model of streptozotocin-induced diabetes mellitus type 2 in Wistar rats. Using the method of β-cells detection with antibodies to insulin, we demonstrated that streptozotocin reduced the number of β-cells and impaired their morphological structure. Both lithium preparations administered to diabetic animals for 28 days in doses of 10 and 8.9 mg/kg, respectively, attenuated the damaging effect of streptozotocin. This cytoprotective effect of lithium salts manifested in weakening of hyperglycemia, polyphagia, polydipsia, and weight loss. A satisfactory correlation between the morphometric data and blood glucose levels was revealed. The mechanisms of the multitarget action of lithium salts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ostrovskaya RU, Ivanov SV, Ozerova IV. The Concept of Similarity between Pancreatic β-cells and Neurons: Pharmacological Aspects. Eksp. Klin. Farmakol. 2017;80(9):20-27. Russian.

    CAS  Google Scholar 

  2. Torshin IYu, Gromova OA. Expert Data Analysis in Molecular Pharmacology. Moscow, 2012. Russian.

  3. Aminzadeh A, Dehpour AR, Safa M, Mirzamohammadi S, Sharifi AM. Investigating the protective effect of lithium against high glucose-induced neurotoxicity in PC12 cells: involvements of ROS, JNK and P38 MAPKs, and apoptotic mitochondria pathway. Cell. Mol. Neurobiol. 2014;34(8):1143-1150.

    Article  CAS  Google Scholar 

  4. Ali TK, Al-Gayyar MM, Matragoon S, Pillai BA, Abdelsaid MA, Nussbaum JJ, El-Remessy AB. Diabetes-induced peroxynitrite impairs the balance of pro-nerve growth factor and nerve growth factor, and causes neurovascular injury. Diabetologia. 2011;54(3):657-668.

    CAS  PubMed  Google Scholar 

  5. Behl T, Kotwani A, Kaur I, Goel H. Mechanisms of prolonged lithium therapy-induced nephrogenic diabetes insipidus. Eur. J. Pharmacol. 2015;755:27-33.

    Article  CAS  Google Scholar 

  6. Chandrasekar B, Mathur SK, Mukherjee SK. Anti-secretagogue effect of lithium on isolated rat islets of Langerhans. J. Exp. Biol. 1989;27(2):163-165.

    CAS  Google Scholar 

  7. Chuang DM, Wang Z, Chiu C.. GSK-3 as a target for lithium-induced neuroprotection against excitotoxicity in neuronal cultures and animal models of ischemic stroke. Front. Mol. Neurosci. 2011;4:15. doi: https://doi.org/10.3389/fnmol.2011.00015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de la Monte SM. Insulin resistance and neurodegeneration: progress towards the development of new therapeutics for Alzheimer’s Disease. Drugs. 2017;77(1):47-65.

    Article  Google Scholar 

  9. Dwivedi T, Zhang H. Lithium-induced neuroprotection is associated with epigenetic modification of specific BDNF gene promoter and altered expression of apoptotic-regulatory proteins. Front. Neurosci. 2015;8:457. doi: https://doi.org/10.3389/fnins.2014.00457.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Feng ZC, Donnelly L, Li J, Krishnamurthy M, Riopel M, Wang R. Inhibition of Gsk3b activity improves b-cell function in c-KitWv/+ male mice. Lab. Invest. 2012;92(4):543-555.

    Article  CAS  Google Scholar 

  11. Forlenza OV, Aprahamian I, de Paula VJ, Hajek T. Lithium, a therapy for AD: current evidence from clinical trials of neurodegenerative disorders. Curr. Alzheimer Res. 2016;13(8):879-886.

    Article  CAS  Google Scholar 

  12. Le Douarin NM. On the origin of pancreatic endocrine cells. Cell. 1988;53(2):169-171.

    Article  Google Scholar 

  13. Nikoulina SE, Ciaraldi TP, Mudaliar S, Mohideen P, Carter L, Henry RR. Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes. Diabetes. 2000;49(2):263-271.

    Article  CAS  Google Scholar 

  14. Ostrovskaya RU, Zolotov NN, Ozerova IV, Ivanova EA, Kapitsa IG, Taraban KV, Michunskaya AM, Voronina TA, Gudasheva TA, Seredenin SB. Noopept normalizes parameters of the incretin system in rats with experimental diabetes. Bull. Exp. Biol. Med. 2014;157(3):344-349.

    Article  CAS  Google Scholar 

  15. Woodgett JR. Physiological roles of glycogen synthase kinase-3: potential as a therapeutic target for diabetes and other disorders. Curr Drug Targets Immune Endocr. Metabol. Disord. 2003;3(4):281-290.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. U. Ostrovskaya.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 165, No. 6, pp. 716-721, June, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrovskaya, R.U., Ivanov, S.V. & Durnev, A.D. Neuroprotective Lithium Salts Protect Pancreatic β-Сells from Damage. Bull Exp Biol Med 165, 758–762 (2018). https://doi.org/10.1007/s10517-018-4259-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4259-7

Key Words

Navigation