Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 165, Issue 3, pp 378–381 | Cite as

Cytogenetic Analysis of the Results of Genome Editing on the Cell Model of Parkinson’s Disease

  • A. S. Vetchinova
  • V. V. Simonova
  • E. V. Novosadova
  • E. S. Manuilova
  • V. V. Nenasheva
  • V. Z. Tarantul
  • I. A. Grivennikov
  • L. G. Khaspekov
  • S. N. Illarioshkin
GENETICS

We performed a cytogenetic analysis of the results of CRISPR/Cas9-correction of G2019S mutation in LRRK2 gene associated with Parkinson’s disease. Genome editing was performed on induced pluripotent stem cells derived from fibroblasts of a patient carrying this mutation. A mosaic variant of tetraploidy 92 XXYY/46,XY (24-43% cells from various clones) was found in neuronal precursors differentiated from the induced pluripotent stem cells after gene editing procedure. Solitary cases of translocations and chromosome breaks were observed. These data confirm the importance of the development of new approaches ensuring genome stability in CRISPR/Cas9-edited cultures.

Key Words

Parkinson’s disease induced pluripotent stem cells genome editing CRISPR/Cas9 cytogenetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vasilieva EA, Melino G, Barlev NA. CRISPR/Cas system for genome editing in pluripotent stem cells. Tsitoloigya. 2015; 57(1):19-30. Russian.Google Scholar
  2. 2.
    Editing Genes and Genomes. Zakiyan SM, Medvedev SP, Dement’eva EV, Vlasov VV, eds. Novosibirsk, 2016. Russian.Google Scholar
  3. 3.
    Biswas A, Gagnon JN, Brouns SJ, Fineran PC, Brown CM. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol. 2013;10(5):817-827.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Choi PS, Meyerson M. Targeted genomic rearrangements using CRISPR/Cas technology. Nat. Commun. 2014;5:3728. doi: https://doi.org/10.1038/ncomms4728.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819-823.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cornu TI, Mussolino C, Cathomen T. Refining strategies to translate genome editing to the clinic. Nat. Med. 2017;23(4):415-423.CrossRefPubMedGoogle Scholar
  7. 7.
    Dekel-Naftali M, Aviram-Goldring A, Litmanovitch T, Shamash J, Reznik-Wolf H, Laevsky I, Amit M, Itskovitz-Eldor J, Yung Y, Hourvitz A, Schiff E, Rienstein S. Screening of human pluripotent stem cells using CGH and FISH reveals low-grade mosaic aneuploidy and a recurrent amplification of chromosome 1q. Eur. J. Hum. Genet. 2012;20(12):1248-1255.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011;471:63-67.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, Brice A, Aasly J, Zabetian C.P, Goldwurm S, Ferreira JJ, Tolosa E, Kay DM, Klein C, Williams DR, Marras C, Lang AE, Wszolek ZK, Berciano J, Schapira AH, Lynch T, Bhatia KP, Gasser T, Lees AJ, Wood NW; International LRRK2 Consortium. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a casecontrol study. Lancet Neurol. 2008;7(7):583-590.doi: https://doi.org/10.1016/S1474-4422(08)70117-0.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Närvä E, Ng S, Sourour M, Hämäläinen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brüstle O, Bazett-Jones DP, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T. Copy number variation and selection during reprogramming to pluripotency. Nature. 2011;471:58-62.CrossRefPubMedGoogle Scholar
  11. 11.
    Lee SY, Chung SK. Integrating Gene Correction in the Reprogramming and Transdifferentiation Processes: A One-Step Strategy to Overcome Stem Cell-Based Gene Therapy Limitations. Stem Cells Int. 2016;2016:2725670. doi: https://doi.org/10.1155/2016/2725670.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Liu X, Homma A, Sayadi J, Yang S, Ohashi J, Takumi T. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Sci. Rep. 2016;6:19675. doi: https://doi.org/10.1038/srep19675.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sanders LH, Laganière J, Cooper O, Mak SK, Vu BJ, Huang YA, Paschon DE, Vangipuram M, Sundararajan R, Urnov FD, Langston JW, Gregory PD, Zhang HS, Greenamyre JT, Isacson O, Schüle B. LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: reversal by gene correction. Neurobiol. Dis. 2014;62:381-386.CrossRefPubMedGoogle Scholar
  14. 14.
    Wazir U, Ahmed MH, Bridger JM, Harvey A, Jiang WG, Sharma AK, Mokbel K. The clinicopathological significance of lamin A/C, lamin B1 and lamin B receptor mRNA expression in human breast cancer. Cell. Mol. Biol. Lett. 2013;18(4):595-611.CrossRefPubMedGoogle Scholar
  15. 15.
    Wijshake T, Baker DJ, van de Sluis B. Endonucleases: new tools to edit the mouse genome. Biochim. Biophys. Acta. 2014;1842(10):1942-1950.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. S. Vetchinova
    • 1
  • V. V. Simonova
    • 1
  • E. V. Novosadova
    • 2
  • E. S. Manuilova
    • 2
  • V. V. Nenasheva
    • 2
  • V. Z. Tarantul
    • 2
  • I. A. Grivennikov
    • 2
  • L. G. Khaspekov
    • 1
  • S. N. Illarioshkin
    • 1
  1. 1.Research Center of NeurologyMoscowRussia
  2. 2.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations