Skip to main content
Log in

Influence of Low-Intensive Red Light on the Myocardium in Experimental Asphyxia

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effects of low-intensity broadband red light on electrical activity of the heart and oxidative modification of proteins in the myocardium of rats after asphyxia. It was shown that low-intensity red light reduced the content of oxidatively modified proteins in rat heart after oxidative stress caused by asphyxia. Exposure to low-intensity red light normalized ECG parameters in rats after asphyxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apresyan AG, Dobkes AL, Ermolov SU, Ermolova TV, Manasyan SG, Serdyukov SV. Disorders of intrahepatic microcirculation of blood at diseases of cardiovascular system and chronic liver diseases. Wschodnioeuropejskie Czasopismo Naukowe. 2017;(3-1):56-62. Russian.

  2. Bavrina AP, Monich VA, Malinovskaya SL. Photomodification of glutathione S-Transferase activity by low-intensity light against various stress factors. Biophysics. 2017;62(5):705-707.

    Article  CAS  Google Scholar 

  3. Bavrina AP, Monich VA, Malinovskaya SL, Borzikov VV, Barinov OO, Mironova KO. Broadband red light as a factor regulating free radical oxidation after exposure of rat muscle tissues to powerful laser. Vestn. Nizhegorod. Gos. Univer. 2014(2-1):112-115. Russian.

    Google Scholar 

  4. Bavrina AP, Monich VA, Malinovskaya SL, Ermolaev VS, Druzhinin EA, Kuznetsov SS. Correction of aftereffects of ionizing radiation by exposure to low-intensity light. Bull. Exp. Biol. Med. 2014;156(5):663-664.

    Article  PubMed  CAS  Google Scholar 

  5. Bavrina AP, Monich VA, Malinovskaya SL, Yakovleva EI, Bugrova ML, Lazukin VF. Method for Correction of Consequences of Radiation-Induced Heart Disease using Low-Intensity Electromagnetic Emission under Experimental Conditions. Bull. Exp. Biol. Med. 2015;159(1):103-106.

    Article  PubMed  CAS  Google Scholar 

  6. Dubinina EE, Morozova MG, Leonova NV, Gamper NL, Soliternova IB, Nuller JuL, Butoma GB, Kovrugina SV. Oxidative modification blood plasma proteins in patients with mental disorders (depression and depersonalization). Vopr. Med. Khimii. 2000;46(4):398-409. Russian.

    PubMed  CAS  Google Scholar 

  7. Kozinets GP, Osadchaya OI, Tsygankov VP, Isaenko NP, Zhernov AA, Boyarksaya AM. Correction of metabolic hypoxia in patients with severe thermal trauma at the stage of burn septicotoxemia. Klininchna Khirurg. 2012;(12):38-42. Russian.

    Google Scholar 

  8. Malinovskaya SL, Bavrina AP, Solov’eva TI, Rakhceeva MV, Yakovleva EI, Monich VA. Evaluation of biological effects of low-intensity electromagnetic radiation on the myocardium in experimental ischemia. Sovr. Tekhnol. Med. 2015;7(2):49-54. Russian.

    Article  Google Scholar 

  9. Matveev AG. Cytotoxicity phenomenon and mechanisms of new cortex lesions when in hypoxia and ischemia. Tikhookean. Med. Zh. 2004;(2):18-23. Russian.

    Google Scholar 

  10. Rybakova MС, Kuznetsova IA. The role of apoptosis in ischemic damage to the myocardium. Arkh. Patol. 2005;67(5):23-25. Russian.

    PubMed  CAS  Google Scholar 

  11. Suslina ZA, Fedorova TN, Maksimova MYu. Dynamics of lipid peroxidation in patients with acute ischemic stroke. Zh. Nevrol. Psikhiatr. 1999;99(7):33-36. Russian.

    CAS  Google Scholar 

  12. Tokarev AR, Kireev SS. Hypoxia in the hypertension (brief review). Vestn. Nov. Med. Tekhnol. 2016;23(2):233-239. Russian.

    Google Scholar 

  13. Khaybullina ZR, Sobirjanova CK. Ultra low concentrations of antioxidants at experimental hypoxia of fetus — some aspects of action mechanism. Vestn. Novosibirsk, Gos. Pedagog. Univer. 2014;(1):211-221. Russian.

    Google Scholar 

  14. Mason MG, Nicholls P, Wilson MT, Cooper CE. Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc. Natl Acad. Sci. USA. 2006;103(3):708-713.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Bavrina.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 165, No. 3, pp. 292-295, March, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavrina, A.P., Monich, V.A. & Malinovskaya, S.L. Influence of Low-Intensive Red Light on the Myocardium in Experimental Asphyxia. Bull Exp Biol Med 165, 322–324 (2018). https://doi.org/10.1007/s10517-018-4160-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4160-4

Key Words

Navigation