Skip to main content
Log in

Vascularization of the Damaged Nerve under the Effect of Experimental Cell Therapy

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Quantitative analysis of blood vessels in the distal segment of rat sciatic nerve after its ligation for 40 sec and subperineurial administration of mesenchymal stem cells or dissociated cells of rat embryonic spinal cord was carried our by immunohistochemical tracing of von Willebrand factor, a marker of endothelial cells of blood vessels. It was found that the number of blood vessels per unit area of the nerve trunk in 21 days after injury and administration of mesenchymal stem cells increased by more than 1.5 times in comparison with the control (damaged nerve). After administration of dissociated cells of the embryonic spinal cord, this effect was not observed. It is assumed that mesenchymal stem cells stimulate the growth of vessels of the damaged nerve via production of angiogenic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrova MA, Podgornyi OV, Marei MV, Poltavtseva RA, Tsitrin EB, Gulyaev DV, Cherkasova LV, Revishchin AV, Korochkin LI, Khrushchov NG, Sukhikh GN. Characteristics of human neural stem cells in vitro and after transplantation into rat brain. Bull. Exp. Biol. Med. 2005;139(1):114-120.

    Article  PubMed  CAS  Google Scholar 

  2. Bersnev VP, Yakovenko IV, Semenyutin VB, Kokin GS. Surgical Treatment of Damaged Nerves with Consideration of Their Blood Supply and Data of Intraoperative Diagnostics. Leningrad, 1991. Russian.

  3. Korzhevskii DE, Kirik OV, Sukhorukova EG, Alekseeva OS, Shaydakov EV. Von Willebrand factor of endotheliocytes of blood vessels and its use in the course of immunomorphologycal researches. Med. Akad. Zh. 2017;17(1):34-40. Russian.

    Google Scholar 

  4. Loseva EV, Podgornyi OV, Poltavtseva RA, Marey MV, Loginova NA, Kurskaya OV, Sukhikh GT, Chilachyan RK, Aleksandrova MA. Effects of human cultural neuronal and mesenchymal stem cells on the rat learning and brain state after acute hypoxia. Ross. Fiziol. Zh. 2011;97(2):155-168. Russian.

    CAS  Google Scholar 

  5. Nikolaev SI, Gallyamov AR, Chelyshev YuA. The local delivery of VEGF and FGF2 genes, stimulating nerve regeneration. Astrakahn. Med. Zh. 2013;8(1):170-174. Russian.

    Google Scholar 

  6. Nozdrachev AD, Chumasov EI. Peripheral Nervous System. St. Petersburg, 1990. Russian.

  7. Parfenova EV, Tkachuk VA. Therapeutic angiogenesis: achievements, problems, prospects. Kardiol. Vestn. 2007;2(2):5-15. Russian.

    Google Scholar 

  8. Petrova ES, Isaeva EN. Study of effect of embryonic anlage allografts of the rat spinal cord on growth of regenerating fibers of the recipient nerve. Biol. Bull. 2014;41(6):479-485.

    Article  CAS  Google Scholar 

  9. Rubina KA, Kalinina NI, Efimenko AYu, Lopatina TV, Melikhova VS, Tsokolaeva ZI, Sysoeva VYu, Tkachuk VA, Parfenova EV. Mechanism of Stimulation of Angiogenesis in Ischemic Myocardium with the Help of Adipose Tissue Stromal Cells. Kardiologiya. 2010;50(2):51-61. Russian.

    PubMed  CAS  Google Scholar 

  10. Sokolova IB, Polyntsev DG. Efficacy of mesenchymal stem cells used for the improvement cerebral microcirculation in spontaneously hypertensive rats. Tsitologiya. 2017;59(4):279-284. Russian.

    CAS  Google Scholar 

  11. Shchanitsyn IN, Ivanov AN, Bazhanov SP, Ninel’ VG, Puchin’jan DM, Norkin IA. Stimulation of Peripheral Nerve Regeneration: Current Status, Problems and Perspectives. Uspekhi Fiziol. Nauk. 2017;48(3):92-112. Russian.

    Google Scholar 

  12. Iarygin KN, Iarygin VN. Neurogenesis in the central nervous system and prospects of regenerative neurology. Zh. Nevrol. Psikhiatr. 2012;112(1):4-13. Russian.

    CAS  Google Scholar 

  13. Baez JC, Gajavelli S, Thomas CK, Grumbles RM, Aparicio B, Byer D, Tsoulfas P. Embryonic cerebral cortex cells retain CNS phenotypes after transplantation into peripheral nerve. Exp. Neurol. 2004;189(2):422-425.

    Article  PubMed  CAS  Google Scholar 

  14. Bell MA, Weddell AG. A morphometric study of intrafascicular vessels of mammalian sciatic nerve. Muscle Nerve. 1984;7(7):524-534.

    Article  PubMed  CAS  Google Scholar 

  15. Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd J.M. Augmenting peripheral nerve regeneration using stem cells: a review of current opinion. World J. Stem Cells. 2015;7(1):11-26.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kakinoki R, Nishijima N, Ueba Y, Oka M, Yamamuro T. Relationship between axonal regeneration and vascularity in tubulation — an experimental study in rats. Neurosci. Res. 1995;23(1):35-45.

    PubMed  CAS  Google Scholar 

  17. Kalinina N, Kharlampieva D, Loguinova M, Butenko I, Pobeguts O, Efimenko A, Ageeva L, Sharonov G, Ischenko D, Alekseev D, Grigorieva O, Sysoeva V, Rubina K, Lazarev V, Govorun V. Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes. Stem Cell Res. Ther. 2015;6:221. doi: https://doi.org/10.1186/s13287-015-0209-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Karagyaur M, Dyikanov D, Makarevich P, Semina E, Stambolsky D, Plekhanova O, Kalinina N, Tkachuk V. Non-viral transfer of BDNF and uPA stimulates peripheral nerve regeneration. Biomed. Pharmacother. 2015;74:63-70.

    Article  PubMed  CAS  Google Scholar 

  19. Kingham PJ, Kolar MK, Novikova LN, Novikov LN, Wiberg M. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev. 2014;23(7):741-754.

    Article  PubMed  CAS  Google Scholar 

  20. Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, Pavlova G, Parfyonova Y, Tkachuk V. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One. 2011;6(3):e17899. doi: https://doi.org/10.1371/journal.pone.0017899.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lu P, Jones LL, Snyder EY, Tuszynski MH. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol. 2003;181(2):115-129.

    Article  PubMed  CAS  Google Scholar 

  22. Masgutov RF, Masgutova GA, Zhuravleva MN, Salafutdi-nov II, Mukhametshina RT, Mukhamedshina YO, Lima LM, Reis HJ, Kiyasov AP, Palotás A, Rizvanov AA. Human adipose-derived stem cells stimulate neuroregeneration. Clin. Exp. Med. 2016;16(3):451-461.

    Article  PubMed  CAS  Google Scholar 

  23. Murakami T, Fujimoto Y, Yasunaga Y, Ishida O, Tanaka N, Ikuta Y, Ochi M. Transplanted neuronal progenitor cells in a peripheral nerve gap promote nerve repair. Brain Res. 2003;974(1-2):17-24.

    Article  PubMed  CAS  Google Scholar 

  24. Okano H, Sawamoto K. Neural stem cells: involvement in adult neurogenesis and CNS repair. Philos.Trans. R Soc. Lond. B Biol. Sci. 2008;363(1500):2111-2122.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Podhajsky RJ, Myers RR. The vascular response to nerverush: relationship to Wallerian degenerationand regeneration. Brain Res. 1993;623(1):117-123.

    Article  PubMed  CAS  Google Scholar 

  26. Santos PM, Winterowd JG, Allen GG, Bothwell MA, Rubel EW. Nerve growth factor: increased angiogenesis without improved nerve regeneration. Otolaryngol. Head Neck Surg. 1991;105(1):12-25.

    Article  PubMed  CAS  Google Scholar 

  27. Shevchenko EK, Makarevich PI, Tsokolaeva ZI, Boldyreva MA, Sysoeva VY, Tkachuk VA, Parfyonova YV. Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. J. Transl. Med. 2013;11:138. doi: https://doi.org/10.1186/1479-5876-11-138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tang Y, Wang J, Lin X, Wang L, Shao B, Jin K, Wang Y, Yang GY. Neural stem cell protects aged rat brain from ischemiareperfusion injury through neurogenesis and angiogenesis. J. Cereb. Blood Flow. Metab. 2014;34(7):1138-1147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Walsh S, Midha R. Use of stem cells to augment nerve injury repair. Neurosurgery. 2009;65(4):80-86.

    Article  Google Scholar 

  30. Zochodne DW. Neurobiology of Peripheral Nerve Regeneration. New York, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Petrova.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 1, pp. 53-57, January, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, E.S., Isaeva, E.N., Kolos, E.A. et al. Vascularization of the Damaged Nerve under the Effect of Experimental Cell Therapy. Bull Exp Biol Med 165, 161–165 (2018). https://doi.org/10.1007/s10517-018-4120-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4120-z

Key Words

Navigation