Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 6, pp 803–815 | Cite as

Circular RNA: New Regulatory Molecules

  • E. A. Belousova
  • M. L. Filipenko
  • N. E. Kushlinskii

Circular RNA are a family of covalently closed circular RNA molecules, formed from pre-mRNA of coding genes by means of splicing (canonical and alternative noncanonical splicing). Maturation of circular RNA is regulated by cis- and trans-elements. Complete list of biological functions of these RNA is not yet compiled; however, their capacity to interact with specific microRNA and play a role of a depot attracts the greatest interest. This property makes circular RNA active regulatory transcription factors. Circular RNA have many advantages over their linear analogs: synthesis of these molecules is conservative, they are universal, characterized by clearly determined specificity, and are resistant to exonucleases. In addition, the level of their expression is often higher than that of their linear forms. It should be noted that expression of circular RNA is tissue-specific. Moreover, some correlations between changes in the repertoire and intensity of expression of circular RNA and the development of some pathologies have been detected. Circular RNA have certain advantages and can serve as new biomarkers for the diagnosis, prognosis, and evaluation of response to therapy.

Key Words

circular RNA noncanonical alternative splicing deposition of minor interfering RNA depot gene expression diagnosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdelmohsen K, Gorospe M. Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip. Rev. RNA. 2010;1(2):214-229.CrossRefPubMedGoogle Scholar
  2. 2.
    Abdelmohsen K, Panda AC, De S, Grammatikakis I, Kim J, Ding J, Noh JH, Kim KM, Mattison JA, de Cabo R, Gorospe M. Circular RNAs in monkey muscle: age-dependent changes. Aging (Albany NY). 2015;7(11):903-910.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Abelson J, Trotta CR, Li H. tRNA splicing. J. Biol. Chem. 1998;273(21):12 685-12 688.CrossRefGoogle Scholar
  4. 4.
    AbouHaidar MG, Venkataraman S, Golshani A, Liu B, Ahmad T. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc. Natl Acad. Sci. USA. 2014;111(40):14,542-14,547.CrossRefGoogle Scholar
  5. 5.
    Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, Kasaragod P, Shelton JM, Liou J, Bassel-Duby R, Olson EN. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015;160(4):595-606.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Andreeva K, Cooper N. Circular RNAs: new players in gene regulation. Adv. Biosci. Biotechnol. 2015;6(6):433-441. doi: Scholar
  7. 7.
    Andrés-León E, Núñez-Torres R, Rojas AM. miARma-Seq: a comprehensive tool for miRNA, mRNA and circRNA analysis. Sci. Rep. 2016;6. ID 25749. doi: 10.1038/srep25749.Google Scholar
  8. 8.
    Armakola M, Higgins MJ, Figley MD, Barmada SJ, Scarborough EA, Diaz Z, Fang X, Shorter J, Krogan NJ, Finkbeiner S, Farese RV Jr, Gitler AD. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat. Genet. 2012;44(12):1302-1309.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ashwal-Fluss R, Meyer M, Pamudurti N.R, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell. 2014;56(1):55-66.CrossRefPubMedGoogle Scholar
  10. 10.
    Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW, Zeillinger R, Pils D. Correlation of circular RNA abundance with proliferation-exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis and normal human tissues. Sci. Rep. 2015;5:8057. doi: Scholar
  11. 11.
    Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT, Xiao X. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin. Chem. 2015;61(1):221-230.CrossRefPubMedGoogle Scholar
  12. 12.
    Barrett SP, Wang PL, Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife. 2015;4:e07540. doi: Scholar
  13. 13.
    Beckedorff FC, Ayupe AC, Crocci-Souza R, Amaral MS, Nakaya HI, Soltys DT, Menck CF, Reis EM, Verjovski-Almeida S. The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation. PLoS Genet. 2013;9(8):e1003705. doi: Scholar
  14. 14.
    Bentley DL. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet. 2014;15(3):163-175.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Braunschweig U, Barbosa-Morais NL, Pan Q, Nachman EN, Alipanahi B, Gonatopoulos-Pournatzis T, Frey B, Irimia M, Blencowe BJ. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res. 2014;24(11):1774-1786.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 2010;6(12):e1001233. doi: Scholar
  17. 17.
    Cech TR. Self-splicing of group I introns. Annu. Rev. Biochem. 1990;59:543-568.CrossRefPubMedGoogle Scholar
  18. 18.
    Chen LL. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 2016;17(4):205-211.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen T, Xiang JF, Zhu S, Chen S, Yin QF, Zhang XO, Zhang J, Feng H, Dong R, Li XJ, Yang L, Chen LL. ADAR1 is required for differentiation and neural induction by regulating microRNA processing in a catalytically independent manner. Cell Res. 2015;25(4):459-476.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125-1134.CrossRefPubMedGoogle Scholar
  21. 21.
    Côté F, Perreault JP. Peach latent mosaic viroid is locked by a 2’,5’-phosphodiester bond produced by in vitro self-ligation. J. Mol. Biol. 1997;273(3):533-543.CrossRefPubMedGoogle Scholar
  22. 22.
    Danan M, Schwartz S, Edelheit S, Sorek R. Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res. 2012;40(7):3131-3142.CrossRefPubMedGoogle Scholar
  23. 23.
    Dropcho EJ, Chen YT, Posner JB, Old LJ. Cloning of a brain protein identified by autoantibodies from a patient with paraneoplastic cerebellar degeneration. Proc. Natl Acad. Sci. USA. 1987;84(13):4552-4556.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016;13(1):34-42.CrossRefPubMedGoogle Scholar
  25. 25.
    Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, Huang Y. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 2015;16:148.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Flores R, Grubb D, Elleuch A, Nohales MÁ, Delgado S, Gago S. Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: variations on a theme. RNA Biol. 2011;8(2):200-206.CrossRefPubMedGoogle Scholar
  27. 27.
    Geng HH, Li R, Su YM, Xiao J, Pan M, Cai XX, Ji XP. The Circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One. 2016;11(3):e0151753. doi: Scholar
  28. 28.
    Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA. 2014;20(11):1666-1670.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Grabowski PJ, Zaug AJ, Cech TR. The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of Tetrahymena. Cell. 1981;23(2):467-476.CrossRefPubMedGoogle Scholar
  30. 30.
    Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15(7):409. doi: Scholar
  31. 31.
    Han L, Zhang G, Zhang N, Li H, Liu Y, Fu A, Zheng Y. Prognostic potential of microRNA-138 and its target mRNA PDK1 in sera for patients with non-small cell lung cancer. Med. Oncol. 2014;31(9):129. doi: Scholar
  32. 32.
    Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384-388.CrossRefPubMedGoogle Scholar
  33. 33.
    Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res. 2013;73(18):5609-5612.CrossRefPubMedGoogle Scholar
  34. 34.
    Hansen TB, Venø MT, Damgaard CK, Kjems J. Comparison of circular RNA prediction tools. Nucleic Acids Res. 2015;44(6):e58. doi: Scholar
  35. 35.
    Hsu M.T, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979;280:339-340.CrossRefPubMedGoogle Scholar
  36. 36.
    Huang R, Jaritz M, Guenzl P, Vlatkovic I, Sommer A, Tamir IM, Marks H, Klampfl T, Kralovics R, Stunnenberg HG, Barlow DP, Pauler FM. An RNA-Seq strategy to detect the complete coding and non-coding transcriptome including full-length imprinted macro ncRNAs. PLoS One. 2011;6(11):e27288. doi: Scholar
  37. 37.
    Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C, Rajewsky N. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 2015;10(2):170-177.CrossRefPubMedGoogle Scholar
  38. 38.
    Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat. Biotechnol. 2014;32(5):453-461.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141-157.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kahvejian A, Roy G, Sonenberg N. The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harb. Symp. Quant. Biol. 2001;66:293-300.CrossRefPubMedGoogle Scholar
  41. 41.
    Kelly S, Greenman C, Cook PR, Papantonis A. Exon skipping is correlated with exon cyclization. J. Mol. Biol. 2015;427(15):2414-2417.CrossRefPubMedGoogle Scholar
  42. 42.
    Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, Wilusz JE. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015;29(20):2168-2182.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA. 2014;20(12):1829-1842.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Li F, Zhang L, Li W, Deng J, Zheng J, An M, Lu J, Zhou Y. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget. 2015;6(8):6001-6013.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B, Guo J. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin. Chim. Acta. 2015;444:132-136.CrossRefPubMedGoogle Scholar
  46. 46.
    Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X, Huang S. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981-984.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015;22(3):256-264.CrossRefPubMedGoogle Scholar
  48. 48.
    Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014;28(20):2233-2247.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lin X, Lo HC, Wong DT, Xiao X. Noncoding RNAs in human saliva as potential disease biomarkers. Front. Genet. 2015;6:175. doi: Scholar
  50. 50.
    Li-Pook-Than J, Bonen L. Multiple physical forms of excised group II intron RNAs in wheat mitochondria. Nucleic Acids Res. 2006;34(9):2782-2790.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lu T, Cui L, Zhou Y, Zhu C, Fan D, Gong H, Zhao Q, Zhou C, Zhao Y, Lu D, Luo J, Wang Y, Tian Q, Feng Q, Huang T, Han B. Transcriptome-wide investigation of circular RNAs in rice. RNA. 2015;21(12):2076-2087.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lu Z, Filonov GS, Noto JJ, Schmidt CA, Hatkevich TL, Wen Y, Jaffrey SR, Matera AG. Metazoan tRNA introns generate stable circular RNAs in vivo. RNA. 2015;21(9):1554-1565.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lukiw WJ. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front. Genet. 2013;4:307. doi: Scholar
  54. 54.
    Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333-338.CrossRefPubMedGoogle Scholar
  55. 55.
    Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One. 2015;10(10):e0141214. doi: Scholar
  56. 56.
    Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 2013;20(3):300-307.CrossRefPubMedGoogle Scholar
  57. 57.
    Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR. 5’ UTR m(6)A promotes cap-independent translation. Cell. 2015;163(4):999-1010.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Kinzler KW, Vogelstein B. Scrambled exons. Cell. 1991;64(3):607-613.CrossRefPubMedGoogle Scholar
  59. 59.
    Pacheco A, Martinez-Salas E. Insights into the biology of IRES elements through riboproteomic approaches. J. Biomed. Biotechnol. 2010;2010. ID 458927. doi: 10.1155/2010/458927.Google Scholar
  60. 60.
    Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Öhman M, Refojo D, Kadener S, Rajewsky N. Circular RNAs in the mammalian brain are Highly abundant, conserved, and dynamically expressed. Mol. Cell. 2015;58(5):870-885.CrossRefPubMedGoogle Scholar
  61. 61.
    Salgia SR, Singh SK, Gurha P, Gupta R. Two reactions of Haloferax volcanii RNA splicing enzymes: joining of exons and cyclization of introns. RNA. 2003;9(3):319-330.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Salzman J. Circular RNA expression: its potential regulation and function. Trends Genet. 2016;32(5):309-316.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Celltype specific features of circular RNA expression. PLoS Genet. 2013;9(9):e1003777. doi: Scholar
  64. 64.
    Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl Acad. Sci. USA. 1976;73(11):3852-3856.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Schmitz KM, Mayer C, Postepska A, Grummt I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 2010;24(20):2264-2269.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, Bindereif A. Exon cyclization requires canonical splice signals. Cell Rep. 2015;10(1):103-111.CrossRefPubMedGoogle Scholar
  67. 67.
    Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs. Int. J. Mol. Sci. 2014;15(6):9331-9342.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC, Salzman J. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 2015;16:126. doi: Scholar
  69. 69.
    Thomas LF, Sætrom P. Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics. 2014; 30(16):2243-2246.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int. J. Genomics. 2014;2014. ID 970607. doi: 10.1155/2014/970607.Google Scholar
  71. 71.
    Villegas VE, Zaphiropoulos PG. Neighboring gene regulation by antisense long non-coding RNAs. Int. J. Mol. Sci. 2015;16(2):3251-3266.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Vivancos AP, Güell M, Dohm JC, Serrano L, Himmelbauer H. Strand-specific deep sequencing of the transcriptome. Genome Res. 2010;20(7):989-999.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, Dinneny JR, Brown PO, Salzman J. Circular RNA is expressed across the eukaryotic tree of life. PLoS One. 2014;9(6):e90859. doi: Scholar
  74. 74.
    Wang Y, Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA. 2015;21(2):172-179.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC. Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 2014;9(5):1966-1980.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    White EJ, Brewer G, Wilson GM. Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation. Biochim. Biophys. Acta. 2013;1829(6-7):680-688.CrossRefPubMedGoogle Scholar
  77. 77.
    Williams GT, Mourtada-Maarabouni M, Farzaneh F. A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochem. Soc. Trans. 2011;39(2):482-486.CrossRefPubMedGoogle Scholar
  78. 78.
    Xu H, Guo S, Li W, Yu P. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci. Rep. 2015;5:12453. doi: Scholar
  79. 79.
    You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci. 2015;18(4):603-610.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Zhang C, Wu H, Wang Y, Zhu S, Liu J, Fang X, Chen H. Circular RNA of cattle casein genes are highly expressed in bovine mammary gland. J. Dairy Sci. 2016;99(6):4750-4760.CrossRefPubMedGoogle Scholar
  81. 81.
    Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon cyclization. Cell. 2014;159(1):134-147.CrossRefPubMedGoogle Scholar
  82. 82.
    Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L, Chen LL. The Biogenesis of Nascent Circular RNAs. Cell Rep. 2016;15(3):611-624.CrossRefPubMedGoogle Scholar
  83. 83.
    Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL. Circular intronic long noncoding RNAs. Mol. Cell. 2013;51(6):792-806.CrossRefPubMedGoogle Scholar
  84. 84.
    Zhao ZJ, Shen J. Circular RNA participates in the carcinogenesis and the malignant behavior of cancer. RNA Biol. 2017; 14(5):514-521.CrossRefPubMedGoogle Scholar
  85. 85.
    Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, Liang L, Gu J, He X, Huang S. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 2016;7:11215. doi: Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. A. Belousova
    • 1
  • M. L. Filipenko
    • 1
  • N. E. Kushlinskii
    • 2
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Division of the Russian Academy of SciencesNovosibirskRussia
  2. 2.N. N. Blokhin National Medical Research Center of OncologyMinistry of Health of the Russian FederationMoscowRussia

Personalised recommendations