Pathological Remodeling of the Myocardium in Chronic Heart Failure: Role of PGC-1α

  • T. G. Kulikova
  • O. V. Stepanova
  • A. D. Voronova
  • M. P. Valikhov
  • V. N. Sirotkin
  • I. V. Zhirov
  • S. N. Tereshchenko
  • V. P. Masenko
  • A. N. Samko
  • G. T. Sukhikh
Article
  • 4 Downloads

Pathological remodeling of the myocardium in chronic heart failure includes the development of pathological cardiac hypertrophy, reactivation of the fetal genetic program, and disorders in cardiac energy metabolism. Coactivator-1α of receptor γ activated by peroxisome proliferator (PGC-1α), a transcription coactivator of nuclear receptors and metabolism master regulator, plays an important role in cardiac metabolism regulation. Studies on the animals models of chronic heart failure have demonstrated the development of pathological cardiac hypertrophy, metabolic disorders, and reactivation of the fetal genetic program; these processes are mutually related. An important role in regulation of these processes belongs to PGC-1α; its low expression indicates low activity and down-regulation of this coactivator. Pathological cardiac hypertrophy, decrease of PGC-1α activity, and reactivation of the fetal genetic program in chronic heart failure are demonstrated.

Key Words

fetal genetic program pathological cardiac hypertrophy myocardial energy metabolism PGC-1α fetal cardiomyocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu PH, Rybkin II, Shelton JM, Manieri M, Cinti S, Schoen FJ, Bassel-Duby R, Rosenzweig A, Ingwall JS, Spiegelman BM. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005;1(4):259-271.CrossRefPubMedGoogle Scholar
  2. 2.
    Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc. Natl Acad. Sci. USA. 2006;103(26):10,086-10,091.CrossRefGoogle Scholar
  3. 3.
    Aubert G, Vega RB, Kelly DP. Perturbations in the gene regulatory pathways controlling mitochondrial energy production in the failing heart. Biochim. Biophys. Acta. 2013;1833(4): 840-847.CrossRefPubMedGoogle Scholar
  4. 4.
    Desvergne B, Michalik L, Wahli W. Transcriptional regulation of metabolism. Phyziol. Rev. 2006;86(2):465-514.CrossRefGoogle Scholar
  5. 5.
    Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ. Res. 2013;113(6):709-724.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 2006;116(3):615-622.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target? Circulation. 2004;109(13):1580-1589.CrossRefPubMedGoogle Scholar
  8. 8.
    Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest. 2000;106(7):847-856.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jäger S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1 alpha null mice. Cell. 2004;119(1):121-135.CrossRefPubMedGoogle Scholar
  10. 10.
    Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6):361-370.CrossRefPubMedGoogle Scholar
  11. 11.
    Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 2003;24(1):78-90.CrossRefPubMedGoogle Scholar
  12. 12.
    Robyr D, Wolffe AP, Wahli W. Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol. Endocrinol. 2000;14(3):329-347.CrossRefPubMedGoogle Scholar
  13. 13.
    Sano M, Izumi Y, Helenius K, Asakura M, Rossi DJ, Xie M, Taffet G, Hu L, Pautler RG, Wilson CR, Boudina S, Abel ED, Taegtmeyer H, Scaglia F, Graham BH, Kralli A, Shimizu N, Tanaka H, Makela TP, Schneider MD. Ménage-à-trois1 is critical for the transcriptional function of PPARgamma coactivator 1. Cell Metab. 2007;5(2):129-142.CrossRefPubMedGoogle Scholar
  14. 14.
    Sano M, Wang S.C, Shirai M, Scaglia F, Xie M, Sakai S, Tanaka T, Kulkarni PA, Barger PM, Youker KA, Taffet GE, Hamamori Y, Michael LH, Craigen WJ, Schneider MD. Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure. EMBO J. 2004;23(17):3559-3569.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure. J. Physiol. 2004;555(Pt 1):1-13.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. G. Kulikova
    • 1
  • O. V. Stepanova
    • 1
  • A. D. Voronova
    • 1
  • M. P. Valikhov
    • 1
  • V. N. Sirotkin
    • 1
  • I. V. Zhirov
    • 1
  • S. N. Tereshchenko
    • 1
  • V. P. Masenko
    • 1
  • A. N. Samko
    • 1
  • G. T. Sukhikh
    • 2
  1. 1.National Medical Research Center of CardiologyMinistry of Health of the Russian FederationMoscowRussia
  2. 2.V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and PerinatologyMinistry of Health of the Russian FederationMoscowRussia

Personalised recommendations