Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 6, pp 770–774 | Cite as

In Vivo Experimental Study of Biological Compatibility of Tissue Engineered Tracheal Construct in Laboratory Primates

  • I. V. Gilevich
  • A. S. Sotnichenko
  • D. D. Karal-ogly
  • E. A. Gubareva
  • E. V. Kuevda
  • I. S. Polyakov
  • B. A. Lapin
  • S. V. Orlov
  • V. A. Porkhanov
  • V. P. Chekhonin
PRIMATOLOGY
  • 14 Downloads

Biological compatibility of a tissue engineered construct of the trachea (synthetic scaffold) and allogenic mesenchymal stem cells was studied on laboratory Papio hamadryas primates. Subcutaneous implantation and orthotopic transplantations of tissue engineered constructs were carried out. Histological studies of the construct showed chaotically located filaments and mononuclear cells fixed to them. Development of a fine connective tissue capsule was found at the site of subcutaneous implantation of the tissue engineered construct. The intact structure of the scaffold populated by various cell types in orthotopic specimens was confirmed by expression of specific proteins. The results indicated biological compatibility of the tissue engineered construct with the mesenchymal stem cells; no tissue rejection reactions were recorded; simulation of respiratory disease therapy on Papio hamadryas proved to be an adequate model.

Key Words

tissue engineered tracheal construct primates mesenchymal stem cells subcutaneous test transplantation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrba VZ, Porkhanov VA, Konoplyannikov AG, Kal’sina SSh, Karal-ogly DD, Ignatova IE, Gvozdik TE, Agumava AA, Leontiuk AV, Lapin BA. Possible aspects of using cultured stem cell of laboratory primates in experimental medicine. Bull. Exp. Biol. Med. 2012;154(1):133-135.CrossRefPubMedGoogle Scholar
  2. 2.
    Baranovsky DS, Lyundup AV, Parshin VD. In vitro cultivation of functioning passaged ciliated epithelium for trachea tissue engineered. Веstn. Ross. Akad. Med. Nauk. 2015; 70(5):561-567. Russian.Google Scholar
  3. 3.
    Buharova TB, Volkov AV, Antonov EN, Vihrova EB, Popova AV, Popov VK, Goldstein DV. Tissue-engineered construction made of adipose derived multipotent mesenchymal stromal cells, polylactide scaffolds and platelet gel. Geny Kletki. 2013;8(4):61-68. Russian.Google Scholar
  4. 4.
    Gilevich IV, Polyakov IS, Porkhanov VA, Chekhonin VP. Morphological Analysis of Biocompatibility of Autologous Bone Marrow Mononuclear Cells with Synthetic Polyethylene Terephthalate Scaffold. Bull. Exp. Biol. Med. 2017;163(3):400-404.CrossRefPubMedGoogle Scholar
  5. 5.
    Gilevich IV, Porhanov VA. The properties of tissue-engineered trachea, composed from synthetic scaffold seeded with human autologous bone marrow mononuclear cells. Vestn. Ural. Med. Akad. Nauki. 2015;55(4):106-108. Russian.Google Scholar
  6. 6.
    Gilevich IV, Fedorenko TV, Pashkova IA, Porkhanov VA, Chekhonin VP. Effects of Growth Factors on Mobilization of Mesenchymal Stem Cells. Bull. Exp. Biol. Med. 2017;162(5):684-686.CrossRefPubMedGoogle Scholar
  7. 7.
    Kiselevskii MV, Anisimova NYu, Kornyushenkov EA, Shepelev AD, Chvalun SN, Polotskii BE, Davydov MI. Biocompatible synthetic tracheal matrixes based on polymer ultrafiber materials colonized by mesenchymal multipotent cells. Sovremen. Tekhnol. Med. 2016;8(1):6-13. Russian.Google Scholar
  8. 8.
    Sergeeva NS, Komlev VS, Sviridova IK, Kirsanova VA, Akhmedova SA, Shanskiy YaD, Kuvshinova EA, Fedotov AYu, Teterina AYu, Egorov AA, Zobkov YuV, Barinov SM. Some physicochemical and biological characteristics of 3D printed constructions based on sodium alginate and calcium phosphates for bone defects reconstruction. Geny Kletki. 2015;10(2):39-45.Google Scholar
  9. 9.
    Chekhonin VP, Shein SA, Korchagina AA, Gurina OI. VEGF in neoplastic angiogenesis. Vestn. Ross. Akad. Med. Nauk. 2012;(2):23-34.CrossRefGoogle Scholar
  10. 10.
    Ajalloueian F, Lim ML, Lemon G, Haag JC, Gustafsson Y, Sjöqvist S, Beltrán-Rodríguez A, Del Gaudio C, Baiguera S, Bianco A, Jungebluth P, Macchiarini P. Biomechanical and biocompatibility characteristics of electrospun polymeric tracheal scaffolds. Biomaterials. 2014;35(20):5307-5315.CrossRefPubMedGoogle Scholar
  11. 11.
    Delaere PR. Tracheal transplantation. Curr. Opin. Pulm. Med. 2012;18(4):313-320.CrossRefPubMedGoogle Scholar
  12. 12.
    Dorati R, Colonna C, Tomasi C, Genta I, Bruni G, Conti B. Design of 3D scaffolds for tissue engineered testing a tough polylactide-based graft copolymer. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;34:130-139.CrossRefPubMedGoogle Scholar
  13. 13.
    Gustafsson Y, Haag J, Jungebluth P, Lundin V, Lim ML, Baiguera S, Ajalloueian F, Del Gaudio C, Bianco A, Moll G, Sjöqvist S, Lemon G, Teixeira AI, Macchiarini P. Viability and proliferation of rat MSCs on adhesion protein-modified PET and PU scaffolds. Biomaterials. 2012;33(32):8094-8103.CrossRefPubMedGoogle Scholar
  14. 14.
    Stoelben E, Koryllos A, Beckers F, Ludwig C. Benign Stenosis of the Trachea. Thorac. Surg. Clin. 2014;24(1):59-65.CrossRefPubMedGoogle Scholar
  15. 15.
    Yan B, Zhang Z, Wang X, Ni Y, Liu Y, Liu T, Wang W, Xing H, Sun Y, Wang J, Li XF. PLGA-PTMC-cultured bone mesenchymal stem cell scaffold enhances cartilage regeneration in tissue-engineered tracheal transplantation. Artif. Organs. 2017;41(5):461-469.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. V. Gilevich
    • 1
  • A. S. Sotnichenko
    • 2
  • D. D. Karal-ogly
    • 3
  • E. A. Gubareva
    • 2
  • E. V. Kuevda
    • 2
  • I. S. Polyakov
    • 1
  • B. A. Lapin
    • 3
  • S. V. Orlov
    • 3
  • V. A. Porkhanov
    • 1
  • V. P. Chekhonin
    • 4
  1. 1.Research Institute — S. V. Ochapovsky Regional Clinic Hospital No. 1KrasnodarRussia
  2. 2.Kuban State Medical Universitythe Ministry of Health of RussiaKrasnodarRussia
  3. 3.Research Institute of Medical PrimatologySochiRussia
  4. 4.N. I. Pirogov National Research Medical Universitythe Ministry of Health of RussiaMoscowRussia

Personalised recommendations