Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 6, pp 738–742 | Cite as

Effect of Oxidized Dextran on Cytokine Production and Activation of IRF3 Transcription Factor in Macrophages from Mice of Opposite Strains with Different Sensitivity to Tuberculosis Infection

  • A. V. Chechushkov
  • P. M. Kozhin
  • N. S. Zaitseva
  • P. I. Gainutdinov
  • E. B. Men’shchikova
  • A. V. Troitskii
  • V. A. Shkurupy
MICROBIOLOGY AND IMMUNOLOGY

We studied differences in the production of pro- and anti-inflammatory cytokines and IRF3 transcription factor by peritoneal macrophages from mice of opposite strains CBA/J and C57Bl/6 and the effect of 60-kDa oxidized dextran on these parameters. Macrophages from C57Bl/6 mice were mainly characterized by the production of proinflammatory cytokines TNFα, IL-12, and MCP-1 (markers of M1 polarization). By contrast, CBA/J mice exhibited a relatively high level of anti-inflammatory cytokine IL-10 and lower expression of proinflammatory cytokines (M2 phenotype). IRF3 content in peritoneal macrophages of CBA/J mice was higher than in C57Bl/6 mice. Oxidized dextran decreased the expression of IRF3 upon stimulation of cells from CBA/J mice with LPS, but increased this process in C57Bl/6 mice. Despite a diversity of oxidized dextran-induced changes in cytokine production, the data confirm our hypothesis that this agent can stimulate the alternative activation of macrophages.

Key Words

60-kDa oxidized dextran peritoneal macrophages cytokines C56Bl/6 CBA/J 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nadeev AP, Shkurupii VA, Uvarova TA, Pozdnyakova SV. Response of mononuclear phagocyte system to experimental tuberculosis in mice of opposite strains. Bull. Exp. Biol. Med. 2005;140(2):253-256.CrossRefPubMedGoogle Scholar
  2. 2.
    Chechushkov AV, Kozhin PM, Zaitseva NS, Lemza AE, Men’shchikova EB, Troitskii AV, Shkurupy VA. Oxidized Dextran Enhances Alternative Activation of Macrophages in Mice of Opposite Lines. Bull. Exp. Biol. Med. 2016;160(6):783-786.CrossRefPubMedGoogle Scholar
  3. 3.
    Shkurupiy VA. The Ultrastructure of Liver Cells in Stress. Novosibirsk, 1989. Russian.Google Scholar
  4. 4.
    Shkurupiy VA, Chernova TG, Kurunov YuN. Granuloma changes in the treatment of tuberculosis with the prolonged form of isoniazid in the experiment. Probl. Tuberkul. Bol. Legkikh. 1993;(1):38-41. Russian.Google Scholar
  5. 5.
    Borges TK, Alves ÉA, Vasconcelos HA, Carneiro FP, Nicola AM, Magalhães KG, Muniz-Junqueira MI. Differences in the modulation of reactive species, lipid bodies, cyclooxygenase-2,5-lipoxygenase and PPAR-γ in cerebral malaria-susceptible and resistant mice. Immunobiology. 2017;222(4):604-619.CrossRefPubMedGoogle Scholar
  6. 6.
    Herath S, Le Heron A, Colloca S, Patterson S, Tatoud R, Weber J, Dickson G. Strain-dependent and distinctive T-cell responses to HIV antigens following immunisation of mice with differing chimpanzee adenovirus vaccine vectors. Vaccine. 2016;34(37):4378-4385.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Koh JS, Wang Z, Levine JS. Cytokine dysregulation induced by apoptotic cells is a shared characteristic of murine lupus. J. Immunol. 2000;165(8):4190-4201.CrossRefPubMedGoogle Scholar
  8. 8.
    Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe. 2012;11(5):469-480.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Novikov A, Cardone M, Thompson R, Shenderov K, Kirschman KD, Mayer-Barber KD, Myers T.G, Rabin RL, Trinchieri G, Sher A, Feng CG. Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1β production in human macrophages. J. Immunol. 2011;187(5):2540-2547.Google Scholar
  10. 10.
    Probst CM, Silva RA, Menezes JP, Almeida TF, Gomes IN, Dallabona AC, Ozaki LS, Buck GA, Pavoni DP, Krieger MA, Veras PS. A comparison of two distinct murine macrophage gene expression profiles in response to Leishmania amazonensis infection. BMC Microbiol. 2012;12:22. doi:  https://doi.org/10.1186/1471-2180-12-22.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Quigley J, Hughitt VK, Velikovsky CA, Mariuzza RA, El-Sayed NM, Briken V. The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis. MBio. 2017;8(2). pii: e00148-17. doi: 10.1128/mBio.00148-17.Google Scholar
  12. 12.
    Sellers RS, Clifford CB, Treuting PM, Brayton C. Immunological variation between inbred laboratory mouse strains: points to consider in phenotyping genetically immunomodified mice. Vet. Pathol. 2012;49(1):32-43.CrossRefPubMedGoogle Scholar
  13. 13.
    Shkurupiy VA, Tkachev VO, Potapova OV, Luzgina NG, Bugrimova JS, Obedinskaya KS, Zaiceva NS, Chechushkov AV. Morphofunctional characteristics of the immune system in CBA and C57Bl/6g mice. Bull. Exp. Biol. Med. 2011;150(6):725-728.CrossRefPubMedGoogle Scholar
  14. 14.
    Starostenko AA, Troitskii AV, Medvedev VS, Gulyaeva EP, Bystrova TN, Shkurupii VA. Pharmacokinetic study of oxidized dextrans. Pharm. Chem. J. 2016;49(12):795-797.CrossRefGoogle Scholar
  15. 15.
    Zaccone P, Fehérvári Z, Cooke A. Tumour necrosis factor-α is a fundamental cytokine in autoimmune thyroid disease induced by thyroglobulin and lipopolysaccharide in interleukin-12 p40 deficient C57BL/6 mice. Immunology. 2003;108(1):50-54.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. V. Chechushkov
    • 1
  • P. M. Kozhin
    • 1
  • N. S. Zaitseva
    • 1
  • P. I. Gainutdinov
    • 1
  • E. B. Men’shchikova
    • 1
  • A. V. Troitskii
    • 1
  • V. A. Shkurupy
    • 1
  1. 1.Research Institute of Experimental and Clinical MedicineNovosibirskRussia

Personalised recommendations