Complex Analysis of Total and Fetal DNA and Cytokines in Blood Plasma of Pregnant Women with Preeclampsia

  • A.M. Krasnyi
  • M. I. Gracheva
  • A. A. Sadekova
  • V. V. Vtorushina
  • I. S. Balashov
  • N. E. Kan
  • P. I. Borovikov
  • L.V. Krechetova
  • V. L. Tyutyunnik
Article
  • 4 Downloads

We performed a complex analysis of total and fetal extracellular DNA, 8 cytokines (IL-2, IL-4, IL-6, IL-8, IL-10, granulocyte-macrophage CSF, IFNγ, and TNFα) in blood plasma obtained from women with preeclampsia prior to labor onset. Total (sensitivity 89.47%, specificity 93.75%) and fetal extracellular DNA (sensitivity 73.68%, specificity 87.5%) were the most accurate parameters determining preeclampsia. We revealed a high correlation (p=3×10—6) between total and fetal extracellular DNA levels in the group of preeclampsia. Preeclampsia significantly increased the levels of macrophage factors IL-10 and IL-6. These cytokines significantly correlated with the levels of total and fetal extracellular DNA in the preeclampsia group. In the control group, such correlations were not observed. These findings obtained suggest that preeclampsia develops upon increased macrophage activity, leading to destruction of the placenta trophoblast cells.

Key Words

preeclampsia extracellular DNA RASSF1A cytokines IL-10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gracheva MI, Kan NE, Krasniy AM. Role of cell-free fetal DNA in the early diagnosis of pregnancy complications. Akush. Ginekol. 2016;(10):5-11. Russian.Google Scholar
  2. 2.
    Krasnyi AM, Kan NE, Tyutyunnik VL, Khovkhaeva PA, Volgina NE, Sergunina OA, Tyutyunnik NV, Bednyagin LA. Oxidative stress in preeclampsia and in normal pregnancy. Akush. Ginekol. 2016;(5):90-95. Russian.Google Scholar
  3. 3.
    Bzowska M, Guzik K, Barczyk K, Ernst M, Flad HD, Pryjma J. Increased IL-10 production during spontaneous apoptosis of monocytes. Eur. J. Immunol. 2002;32(7):2011-2020.CrossRefPubMedGoogle Scholar
  4. 4.
    Chan KC, Ding C, Gerovassili A, Yeung SW, Chiu RW, Leung TN, Lau TK, Chim SS, Chung GT, Nicolaides KH, Lo YM. Hypermethylated RASSF1A in maternal plasma: A universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin. Chem. 2006;52(12):2211-2218.CrossRefPubMedGoogle Scholar
  5. 5.
    Chen Q, Sousa JD, Snowise S, Chamley L, Stone P. Reduction in the severity of early onset severe preeclampsia during gestation may be associated with changes in endothelial cell activation: A pathological case report. Hypertens. Pregnancy. 2016;35(1):32-41.CrossRefPubMedGoogle Scholar
  6. 6.
    Choi JJ, Reich CF 3rd, Pisetsky DS. The role of macrophages in the in vitro generation of extracellular DNA from apoptotic and necrotic cells. Immunology. 2005;115(1):55-62.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gleicher N, Kushnir VA, Barad DH. Redirecting reproductive immunology research toward pregnancy as a period of temporary immune tolerance. J. Assist. Reprod. Genet. 2017;34(4):425-430.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pilette C, Detry B, Guisset A, Gabriels J, Sibille Y. Induction of interleukin-10 expression through Fcalpha receptor in human monocytes and monocyte-derived dendritic cells: role of p38 MAPKinase. Immunol. Cell Biol. 2010;88(4):486-493.CrossRefPubMedGoogle Scholar
  9. 9.
    Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation. 2011;123(24):2856-2869.CrossRefPubMedGoogle Scholar
  10. 10.
    Redman CW, Sargent IL. Pre-eclampsia, the placenta and the maternal systemic inflammatory response--a review. Placenta. 2003;24(Suppl. A):S21-S27.CrossRefPubMedGoogle Scholar
  11. 11.
    Roberts JM, Taylor RN, Goldfien A. Clinical and biochemical evidence of endothelial cell dysfunction in the pregnancy syndrome preeclampsia. Am. J. Hypertens. 1991;4(8):700-708.CrossRefPubMedGoogle Scholar
  12. 12.
    Salvianti F, Inversetti A, Smid M, Valsecchi L, Candiani M, Pazzagli M, Cremonesi L, Ferrari M, Pinzani P, Galbiati S. Prospective evaluation of RASSF1A cell-free DNA as a biomarker of pre-eclampsia. Placenta. 2015;36(9):996-1001.CrossRefPubMedGoogle Scholar
  13. 13.
    Szarka A, Rigó J Jr, Lázár L, Beko G, Molvarec A. Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol. 2010;11:59. doi:  https://doi.org/10.1186/1471-2172-11-59.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang Y, Lewis DF, Gu Y, Zhao S, Groome LJ. Elevated maternal soluble Gp130 and IL-6 levels and reduced Gp130 and SOCS-3 expressions in women complicated with preeclampsia. Hypertension. 2011;57(2):336-342CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A.M. Krasnyi
    • 1
    • 2
  • M. I. Gracheva
    • 1
  • A. A. Sadekova
    • 1
  • V. V. Vtorushina
    • 1
  • I. S. Balashov
    • 1
  • N. E. Kan
    • 1
  • P. I. Borovikov
    • 1
  • L.V. Krechetova
    • 1
  • V. L. Tyutyunnik
    • 1
  1. 1.V. I. Kulakov Research Center of Obstetrics, Gynecology, and PerinatologyMinistry of Health of the Russian FederationMoscowRussia
  2. 2.N. K. Koltsov Institute of Developmental BiologyMoscowRussia

Personalised recommendations