Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 5, pp 661–665 | Cite as

Effect of Various Treatment Modes of Experimental Mammary Gland Tumor on Structure of Anterior Mediastinal Lymph Nodes

  • O. V. Kazakov
  • A. V. Kabakov
  • A. F. Poveshchenko
  • T. V. Raiter
  • D. N. Strunkin
  • S. S. Bogachev
  • I. Yu. Ishchenko
  • A. P. Lykov
  • S. V. Michurina
  • V. I. Konenkov
Article
  • 4 Downloads

The effects of various treatment modes on the morphology of anterior mediastinal lymph nodes were examined in female Wistar rats with chemically provoked breast cancer. Adjuvant chemotherapy impaired filtration barrier potential of the anterior mediastinal lymph nodes, which manifested in increased volume of sinuses, reduced volumes of lymphoid nodules with germinal centers and thymus-dependent regions, down-regulated proliferative activity of lymphoid cells in B-cell zone and paracortex, and diminished macrophage score in all zones. Intraperitoneal injection of double-stranded DNA preparation (5 mg/kg) activated the humoral and cellular immune responses manifested by morphological alterations in anterior mediastinal lymph nodes observed in parallel with a decrease of medullary sinuses volume: enhancement of lymphocyte volume and lymphocyte score in paracortex, mantle zone expansion, and an increase of volume of the light centers in lymphoid nodules paralleled with diminished proliferative activity in them.

Key Words

chemically induced breast cancer double-stranded DNA preparation anterior mediastinal lymph nodes adjuvant chemotherapy morphometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bogachev SS, Proskurina AS, Gvozdeva TS, Potter EA, Dolgova EV, Orishchenko KE, Nikolin VP, Popova NA, Chernykh ER, Ostanin AA, Leplina OYu, Varaksin NA, Ryabicheva TG, Dvornichenko VV, Ponomarenko DM, Sidorov SV. Results of phase II of clinical trials of Panangin preparation and data on 5-year relapse-free survival of patients involved in the study. Ross. Bioter. Zh. 2016;15(1):13-14. Russian.Google Scholar
  2. 2.
    Borodin YuI. Regional lymphatic drainage and lymphodetoxication. Morfologiya. 2005;128(4):25-28. Russian.Google Scholar
  3. 3.
    Kazakov OV, Kabakov AV, Poveschenko AF, Miller TV, Chepik VI, Rajter TV, Strunkin DN, Larionov PM, Konenkov VI. Thymus in mammary gland experimental carcinogenesis. Vestn. Novosib. Gos. Univer. Ser. Biol., Klin. Med. 2014;12(3):58-62. Russian.Google Scholar
  4. 4.
    Kazakov OV, Kabakov AV, Ishchenko IY, Poveshchenko AF, Raiter TV, Strunkin DN, Michurina SV, Konenkov VI. The Thymus in Experimental Mammary Carcinogenesis and Polychemotherapy. Bull. Exp. Biol. Med. 20176;162(4):479-482.Google Scholar
  5. 5.
    Kazakov OV, Kabakov AV, Poveshchenko AF, Ishchenko IY, Poveshchenko OV, Strunkin DN, Raiter TV, Michurina SV, Konenkov VI. Changes in the Structure of the Thymus under Conditions of Various Treatments for Experimental Mammary Tumor. Bull. Exp. Biol. Med. 2017;162(5):654-657.CrossRefPubMedGoogle Scholar
  6. 6.
    Konenkov VI, Borodin YuI, Lyubarskii MS. Lymfology. Novosibirsk, 2012. Russian.Google Scholar
  7. 7.
    Proskurina AS, Alyamkina EA, Dolgova EV, Nikolin VP, Popova NA, Gvozdeva TS, Orishchenko KE, Sidorov SV, Chernykh ER, Ostanin AA, Leplina OYu, Dvornichenko VV, Ponomarenko DM, Soldatova GS, Varaksin NA, Ryabicheva TG, Zagrebelnij SN, Rogachev VA, Bogachev SS, Shurdov MA. Leykostimulatory and antitumor effect of the human double-stranded DNA preparation “Panagen” in experiments and clinical trials. i. leykostimulatory and antitumor effect of the preparation “Panagen” in experiments. Vestn. Novosib. Gos. Univer. Ser. Biol., Klin. Med. 2013;11(4):67-82. Russian.Google Scholar
  8. 8.
    Alyamkina EA, Leplina OY, Sakhno LV, Chernykh ER, Ostanin AA, Efremov YR, Shilov AG, Proskurina AS, Orishchenko KE, Dolgova EV, Rogachev VA, Nikolin VP, Popova NA, Zagrebelniy SN, Bogachev SS, Shurdov MA. Effect of double-stranded DNA on maturation of dendritic cells in vitro. Cell. Immunol. 2010;266(1):46-51.Google Scholar
  9. 9.
    Farnsworth RH, Lackmann M, Achen MG, Stacker SA. Vascular remodeling in cancer. Oncogene. 2014;33(27):3496-3505.CrossRefPubMedGoogle Scholar
  10. 10.
    Ikezawa Y, Nakazawa M, Tamura C, Takahashi K, Minami M, Ikezawa Z. Cyclophosphamide decreases the number, percentage and the function of CD25+ CD4+ regulatory T cells, which suppress induction of contact hypersensitivity. J. Dermatol. Sci. 2005;39(2):105-112.CrossRefPubMedGoogle Scholar
  11. 11.
    Lopez DM, Charyulu V, Adkins B. Influence of breast cancer on thymic function in mice. J. Mammary Gland Biol. Neoplasia. 2002;7(2):191-199.CrossRefPubMedGoogle Scholar
  12. 12.
    Meneses A, Verastegui E, Barrera JL, de la Garza J, Hadden JW. Lymph node histology in head and neck cancer: impact of immunotherapy with IRX-2. Int. Immunopharmacol. 2003;3(8):1083-1091.CrossRefPubMedGoogle Scholar
  13. 13.
    Su YC, Rolph MS, Cooley MA, Sewell WA. Cyclophosphamide augments inflammation by reducing immunosuppression in a mouse model of allergic airway disease. J. Allergy Clin. Immunol. 2006;117(3):635-641.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. V. Kazakov
    • 1
  • A. V. Kabakov
    • 1
  • A. F. Poveshchenko
    • 1
  • T. V. Raiter
    • 1
  • D. N. Strunkin
    • 1
  • S. S. Bogachev
    • 1
  • I. Yu. Ishchenko
    • 1
  • A. P. Lykov
    • 1
  • S. V. Michurina
    • 1
  • V. I. Konenkov
    • 1
  1. 1.Research Institute of Experimental and Clinical LymphologyNovosibirskRussia

Personalised recommendations